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Tensor Data

@ A tensor is a multidimensional array.
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Vector Matrix Order 3 Tensor

@ Can have higher-order tensors T € RP1* " *Pd,
@ This talk: focus on order 3 tensors.
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Examples of Tensor Data

@ Matrix time series
Apple Twitter Tesla
Revenue; Xl(tl) X1(;) X{?
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Examples of Tensor Data

@ Matrix time series
Apple Twitter Tesla
Revenue; Xl(tl) X1(;) X1(?
Assets; Xétl) Xé;) Xé?

" Dividends per share; X:gtl) X?()g) X:E?

@ Brain imaging data
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Special Case: Multilayer Networks

Observe L networks on same n vertices
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Multilayer Networks

Identify each network with its adjacency matrix:

Organize adjacency matrices into n x n x L Tensor!
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This Talk

Main Question

Given a noisy high-dimensional p; x ps x p3 tensor with un-
derlying community structure, can we consistently estimate the
communities in the high dimensional regime py,p2,ps < p as
p — 00?
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@ There are r;, communities for each mode (k

each node belongs to one community.
@ Entry 41,49, i3 of the signal tensor is determined by

community memberships of nodes i1, iz, and is.
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Tensor Blockmodels

Interpretation

@ There are r;, communities for each mode (k = 1,2, 3), and
each node belongs to one community.

@ Entry i1, 15,13 Of the signal tensor is determined by
community memberships of nodes i1, i, and is.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.



Community Models
000000000

Tensor Blockmodels

Interpretation

@ There are r;, communities for each mode (k = 1,2, 3), and
each node belongs to one community.

@ Entry i1, 15,13 Of the signal tensor is determined by
community memberships of nodes i1, i, and is.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.

@ Each airport belongs to one of r; communities (r; = r3).
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Tensor Blockmodels

Interpretation

@ There are r;, communities for each mode (k = 1,2, 3), and
each node belongs to one community.

@ Entry i1, 15,13 Of the signal tensor is determined by
community memberships of nodes i1, i, and is.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.

@ Each airport belongs to one of r; communities (r; = r3).
@ Each airline belongs to one of r3 communities.
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Tensor Blockmodels

Interpretation

@ There are r;, communities for each mode (k = 1,2, 3), and
each node belongs to one community.

@ Entry 41,49, i3 of the signal tensor is determined by
community memberships of nodes i1, i, and is.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.

@ Each airport belongs to one of r; communities (r; = r3).
@ Each airline belongs to one of r3 communities.

@ iy,10,13 entry of the signal tensor is governed by mean
associated to memberships of airport i, airport i, and airline is.
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Tensor Blockmodels

Interpretation

@ There are r;, communities for each mode (k = 1,2, 3), and
each node belongs to one community.

@ Entry 41,15, 13 of the signal tensor is determined by
community memberships of nodes i1, is, and is.

Example II:
@ Multilayer network with airports, airports, and time as the modes.
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Tensor Blockmodels

Interpretation

@ There are r;, communities for each mode (k = 1,2, 3), and
each node belongs to one community.

@ Entry 41,15, 13 of the signal tensor is determined by
community memberships of nodes i1, is, and is.

Example II:
@ Multilayer network with airports, airports, and time as the modes.
@ Each airport belongs to one of r; communities (r; = r2).
@ Each time belongs to one of r3 communities.

@ iy,10,13 entry of the signal tensor is governed by mean
associated to memberships of airport i, airport i, and time i3.
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@ There are r, communities for each mode and each node

belongs to a convex combination of communities.
@ Entry 41,49, i3 of the signal tensor is determined by

community membership vectors of nodes i1, i, i3.
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Tensor Mixed-Membership Blockmodels

Interpretation

@ There are r;, communities for each mode and each node
belongs to a convex combination of communities.

@ Entry 41,49, i3 of the signal tensor is determined by
community membership vectors of nodes i1, is, i3.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.
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Tensor Mixed-Membership Blockmodels

Interpretation

@ There are r;, communities for each mode and each node
belongs to a convex combination of communities.

@ Entry 41,49, i3 of the signal tensor is determined by
community membership vectors of nodes i1, is, i3.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.

@ Each airport belongs to convex combination of »; communities
(r1 = 1r2).
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Tensor Mixed-Membership Blockmodels

Interpretation

@ There are r;, communities for each mode and each node
belongs to a convex combination of communities.

@ Entry 41,49, i3 of the signal tensor is determined by
community membership vectors of nodes i1, is, i3.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.

@ Each airport belongs to convex combination of »; communities
(r1 = 12).

@ Each airline belongs to convex combination of 3 communities.
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Tensor Mixed-Membership Blockmodels

Interpretation

@ There are r;, communities for each mode and each node
belongs to a convex combination of communities.

@ Entry 41,49, i3 of the signal tensor is determined by
community membership vectors of nodes i1, is, i3.

Example I:

@ Multilayer network with airports, airports, and airlines as the
modes.

@ Each airport belongs to convex combination of »; communities
(r1 = 1r2).

@ Each airline belongs to convex combination of 3 communities.

@ iy,19,13 entry of the signal tensor is governed by weighted sum of
community means associated to airport i1, airport iz, and airline
is.
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Tensor Mixed-Membership Blockmodels

Interpretation

@ There are r, communities for each mode and each node
belongs to a convex combination of communities.

@ Entry 41,49, i3 of the signal tensor is determined by
community membership vectors of nodes iy, iz, is3.

Example II:
@ Multilayer network with airports, airports, and time as the modes.
@ Each airport belongs to convex combination of »; communities
(r1 = 12).
@ Each time belongs to convex combination of r3 communities.

@ iy,19,13 entry of the signal tensor is governed by weighted sum of
community means.
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Tensor Mixed-Membership Blockmodels

“1213 - Z Z Z 8l1[2l3 Hl i1ly ( )12l2 (H3)7§3l3 1 <ip < pis;

l1=11=113=1
T:SX1H1 X2H2 X3H3;

S € R™1%72X73  ig g Mean Tensor;
I € [0,1]7**™ are Mized — Membership Matrices (|| (Hk)i.Hl =1
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Tensor Mixed-Membership Blockmodels

“1213 - Z Z Z Sl112l3 Hl 2 Iy ( )12l2 (H?’)Ml% 1< Zk = DPk;

l1=112=113=1
T:SX1H1 X2H2X3H3;

S e R"*"™*"s s a Mean Tensor;
I, € [0,1]P*"  are Mized — Membership Matrices (||(TIg), |1 = 1)

Interpretation

@ There are r, communities for each mode.
@ S € R *"2X"s encodes the community means.

@ 45 'th row of IT;, € [0, 1]P=*"* tells us how much node i
belongs to each community.
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Tensor Mixed-Membership Blockmodels

Interpretation

@ There are r, communities for each mode.
@ S € R *"2X"s encodes the community means.

@ 45 'th row of IT; € [0, 1]P=*"* tells us how much node i
belongs to each community.

Extract IT,
>

Underlying Tensor 7~ € RP1 XP2XP3, p1 Rows of matrix TT; .
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Identifiability

@ Observation: if IT;, € {0,1}P**"* then T is a tensor blockmodel.
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Identifiability

@ Observation: if IT;, € {0,1}P**"* then T is a tensor blockmodel.
@ If row 45, of Iy, is {0, 1}-valued, we say i, is a pure node.
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Identifiability

@ Observation: if IT;, € {0,1}P**"* then T is a tensor blockmodel.
@ If row 45, of Iy, is {0, 1}-valued, we say i, is a pure node.

Proposition

Suppose each mode contains at least one pure node for each
community and S is full rank. Then the model is identifiable up to
community relabeling.

Full rank: S can be written as matrix in three different ways — each of these is full rank.
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Identifiability

@ Observation: if IT;, € {0,1}P**"* then T is a tensor blockmodel.
@ If row 45, of Iy, is {0, 1}-valued, we say i, is a pure node.

Proposition

Suppose each mode contains at least one pure node for each
community and S is full rank. Then the model is identifiable up to
community relabeling.

Full rank: S can be written as matrix in three different ways — each of these is full rank.

Estimate community membership matrices I1;,I1,, and I3 €
0, pwxrs.
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Brief Detour: Tucker Decompositions and Tensor SVD

@ Matrix SVD:

B
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@ No unified notion of Tensor SVD!
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Brief Detour: Tucker Decompositions and Tensor SVD

@ Matrix SVD:

.u

@ No unified notion of Tensor SVD!

@ Tensor mixed-membership blockmodel is related to Tucker
decomposition
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Brief Detour: Tucker Decomposition and Tensor SVD

Definition
Atensor 7T is rank r = (11,72, 73) if r is the smallest triplet such that

T:C X1U1 XQUQ ><3U3;
C e R"*"*"3 s a core tensor,
U, € RP**"kare orthonormal loading matrices.

Note: generalizes matrix SVD to higher-order.
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Spectral Geometry

Proposition

Suppose T = S x1 II; x, IIy x3 I3 is a tensor MMBM such that S is
full rank with a pure node for each community along each mode. Let
T =C x1 Uy x5 Uy x3 Us be the rank (r1,r2,73) Tucker factorization.
Then

U, = LU,

where U,(f“’e) € R™=*"r consists of the rows of Uy, corresponding to
pure nodes for mode k.
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Spectral Geometry

Proposition

Suppose T = S x1 II; x, IIy x3 I3 is a tensor MMBM such that S is
full rank with a pure node for each community along each mode. Let
T =C x1 Uy x5 Uy x3 Us be the rank (r1,r2,73) Tucker factorization.
Then

Uy, = I, U,

where U](f"”e) € R"=*"k consists of the rows of Uy, corresponding to
pure nodes for mode k.

Geometric Insight

Rows of loading matrices of 7 belong to a simplex with corners
determined by pure nodes!
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Spectral Geometry

Geometric Insight

Rows of loading matrices of 7 belong to a simplex with corners
determined by pure nodes!

ngurc)

Rows of matrix I . Rows of loading matrix Uy .
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Estimation Procedure

Key Idea

Given an observation 7 = T +
@ First estimate the loading matrices U, U,, and Us.

@ Next estimate pure nodes by finding the corners of the
simplex associated to rows of U, (standard corner-finding
algorithms exist)

© Estimate IT;, via plug-in from the equation
I, = U, (Ul(cpurc)) -1 .
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Estimation Procedure

Key Idea

Given an observation 7 = T +
@ First estimate the loading matrices U, U,, and Us.

@ Next estimate pure nodes by finding the corners of the
simplex associated to rows of U, (standard corner-finding
algorithms exist)

© Estimate IT;, via plug-in from the equation
ure)y\ —1
I, = U, (UP) 7

Need to estimate the loading matrices!
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Higher-Order SVD

@ First straightforward guess: use leading r;. left singular vectors of
My (T)

r, left singular vectors
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Higher-Order SVD

@ First straightforward guess: use leading r;. left singular vectors of
My (T)

r, left singular vectors

@ Problem: can be suboptimal in high-noise regime!
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Higher-Order SVD

@ First straightforward guess: use leading r;. left singular vectors of
M (T)

U 1 T
e o o vectors
k N

@ Problem: can be suboptimal in high-noise regime!
@ Why? Higher-Order SVD ignores tensor structure.
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Higher-Order SVD

@ First straightforward guess: use leading r;, left singular vectors of

~

My(T)

r, left singular vectors

@ Problem: can be suboptimal in high-noise regime!
@ Why? Higher-Order SVD ignores tensor structure.

Iteratively refine the initial estimate using tensor structure!
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Higher-Order Orthogonal Iteration

o Given previous iterate U{"~") update U'" via

U = r, left singular vectors of M (T x, US™ x5 TS Y);
U = r, left singular vectors of My (T x5 U™ x; TP);
U = r; left singular vectors of My (T x; T x, T).
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1sor Perturbation D

Conclusion

Higher-Order Orthogonal Iteration
o Given previous iterate U{"~") update U'" via

U = r, left singular vectors of M (T x, US™ x5 TS Y);
U = r, left singular vectors of M, (T x5 TY " x, TP);

U = r; left singular vectors of My (T x; T x, T).

@ Intuition: preserves singular subspace, but greatly reduces noise!

X2ﬁgt71) Xsﬁét—l)
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Higher-Order Orthogonal Iteration

o Given previous iterate U{"~") update U'" via

UYY =1, left singular vectors of M, (7 x2 Y™V x3 U );
U = r, left singular vectors of M, (T x5 TY " x, TP);
U = r; left singular vectors of My (T x; T x, T).

@ Intuition: preserves singular subspace, but greatly reduces noise!

@ Warm start: use modified spectral initialization to account for
heteroskedastic noise.
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Full Estimation Procedure

Given atensor 7 = T + Noise € RP1XP2xps;
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Full Estimation Procedure

Given atensor 7 =T + € RP1XP2XDs-
@ Estimate loading matrices (singular vectors) via HOOI, obtaining
estimates {U}3_, with U, € RP+x"»
@ Fork=1,2,3:
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Full Estimation Procedure

Given atensor 7 =T + € RP1xP2Xps;
@ Estimate loading matrices (singular vectors) via HOOI, obtaining
estimates {U}3_, with U;, € RPex7x,
@ Fork=1,2,3:

e Estimate pure nodes via a corner finding algorithm and obtain
3 (pure)
UPre),
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Full Estimation Procedure

Given atensor 7 =T + € RP1xP2Xps;
@ Estimate loading matrices (singular vectors) via HOOI, obtaining
estimates {U}3_, with U;, € RPex7x,
@ Fork=1,2,3:

e Estimate pure nodes via a corner finding algorithm and obtain
3 (pure)
UPre),

o Estimate ITj via

I, = U (TP,
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Theoretical Guarantees

Theorem (Agterberg and Zhang (2022))

Suppose that:

@ (Ildentifiability) each mode contains at least one pure node for
each community and S is full rank.
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Theorem (Agterberg and Zhang (2022))

Suppose that:

@ (Ildentifiability) each mode contains at least one pure node for
each community and S is full rank.

@ (Regime) that r;, < r and p;, < p withr < Cp'/?
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Suppose that:

@ (Ildentifiability) each mode contains at least one pure node for
each community and S is full rank.

@ (Regime) that rj, < r and p;, < p withr < Cp'/?
@ (Signal) S has smallest singular value A and condition number k;
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Theoretical Guarantees

Theorem (Agterberg and Zhang (2022))

Suppose that:

@ (Ildentifiability) each mode contains at least one pure node for
each community and S is full rank.

@ (Regime) that r;, < r and p;, < p withr < Cp'/?
@ (Signal) S has smallest singular value A and condition number k;
o ( ) the noise is independent with variance at most +2;
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Theoretical Guarantees

Theorem (Agterberg and Zhang (2022))

Suppose that:

@ (Ildentifiability) each mode contains at least one pure node for
each community and S is full rank.

@ (Regime) that r;, < r and p;, < p withr < Cp'/?
@ (Signal) S has smallest singular value A and condition number k;
o ( ) the noise is independent with variance at most +2;

@ (SNR) &7 > cEr s,
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Theoretical Guarantees

Theorem (Agterberg and Zhang (2022))

Suppose that:

@ (Ildentifiability) each mode contains at least one pure node for
each community and S is full rank.

@ (Regime) that r;, < r and p;, < p withr < Cp'/?
@ (Signal) S has smallest singular value A and condition number k;
o ( ) the noise is independent with variance at most +2;
@ (SNR) &7 > cEr s,
LetTI, € [O 1]W” denote the estimated memberships with
t =< log( @ / ) 5 /2) iterations for HOOI. Then there exist permutation
matrices { Py} such that with probability at least 1 — p~1° it holds that

k32 /og(p)
o, - 11 _—
lg},a);k ||( k kPk) || C (A/ )p
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Comparison to Matrix Setting

@ For matrix mixed-membership blockmodel, it was previously
shown that

. ) ) ~ 1
(Matrix) _ yy(Matrix) _
max || (TT I P), | O(sm - \/ﬁ).



Estimation Algorithm
0000000000 e

Comparison to Matrix Setting

@ For matrix mixed-membership blockmodel, it was previously
shown that

. ) ) ~ 1
H(Matrlx) _ H(Matrlx) = .
max | P)ill =0\ sxrx VP

@ Using HOOI, our results show that

R ~ 1
I —ILPe), = O s )
mlaxll( k KPx), O(SNR, xp)
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Comparison to Matrix Setting

@ For matrix mixed-membership blockmodel, it was previously
shown that

~ . . ~ 1
H(Matrlx) _ H(Matrlx) = .
max I P).ll =0\ sxmx NG

@ Using HOOI, our results show that

R ~ 1
I —ILPe), = O s )
mZTdX”( k kPi), I O(SNR, xp)

Key Takeaway

Higher-order structures improve estimation guarantees relative
to the matrix setting.

Note: higher-order SVD results in row-wise error O(1).



Motivation Community Models Estimation Algorithm €9 oo Tensor Perturbation Data Analysis Conclusion References
000000 0000000000 00000000000 @000000 000000000 [e]e]e} 000000000000

Outline

© (... Tensor Perturbation



€9 oo Tensor Perturbation
0800000

Proof Idea

@ Recall the bound:

~ /1
max | (IL, — L), || = 0(51\'1%,><p)'
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@ Recall the bound:

~ /1
max | (IL, — L), || = 0<51\'R,><p)'

o Since I, = U, (TP")) ™!, we need to ensure that:
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Proof Idea

@ Recall the bound:

~ /1
max | (IL, — L), || = O<51\'R,><p)'

o Since I, = U, (TP")) ™!, we need to ensure that:
e The pure nodes are found correctly with high probability;
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Proof Idea

@ Recall the bound:

~ /1
max | (IL, — L), || = O<51\'R,><p)'

o Since I, = U, (TP")) ™!, we need to ensure that:

e The pure nodes are found correctly with high probability;
e Uy is sulfficiently close to Uy.



Lo o Tensor Perturbation
08000

Proof Idea

@ Recall the bound:

~ /1
max | (IL, — L), || = 0<51\'R><p>'

o Since I, = U, (TP")) ™!, we need to ensure that:

e The pure nodes are found correctly with high probability;
e Uy is sulfficiently close to Uy.

Need to show that each row of Uy, is sufficiently close to Uy,
with high probability.
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Technical Tool: /5, Perturbation Bound

Theorem ( Agterberg and Zhang (2022))

Let T be a rank (r1,r2,73) tensor with Tucker decomposition
T =C x1 U; x5 Us x Us. Suppose that

@ (Regime) that r;, < r and p;, =< p withr < Cp*/?
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@ (Signal) C has smallest singular value \ and condition number k;
@ ( ) the noise is independent with variance at most 2
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Technical Tool: /5, Perturbation Bound

Theorem ( Agterberg and Zhang (2022))

Let T be a rank (r1,r2,73) tensor with Tucker decomposition
T =C x1 U; x5 Us x Us. Suppose that

@ (Regime) that r;, < r and p;, =< p withr < Cp*/?
@ (Signal) C has smallest singular value \ and condition number k;
@ ( ) the noise is independent with variance at most 2

@ (SNR) \/o > Ckp*/*+/log(p).
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Technical Tool: /5, Perturbation Bound

Theorem ( Agterberg and Zhang (2022))

Let T be a rank (r1,r2,73) tensor with Tucker decomposition
T =C x1 U; x5 Us x Us. Suppose that
@ (Regime) that r;, < r and p;, =< p withr < Cp*/?
@ (Signal) C has smallest singular value \ and condition number k;
@ ( ) the noise is independent with variance at most 2
@ (SNR) Mo > Ckp3/4\/log(p).
Let ﬁ(t) € RP=*"t denote the estimated loadings (singular vectors)
from HOOI with t < log ( ). Then there exists an orthogonal matrix
W such that

(t) (t) ry; log(p)
g ([0 - Uew)?), || < e
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Previous Bounds

1T —uwW | r < CS\{\I; (Previous Work)
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max ||(U(t) U, W t)) | < CL*%()

k
o SNR (Our Work)
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Previous Bounds

oY —uw|r <C VP (Previous Work)
SNR
(t) (1) KTk log(p)
e (T = UW?), Il < 0= (Our Work)

— Errors are spread out along each row!

Note: result also depends on spread-outedness of the tensor.
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— Optimal up to factors of the condition number « and loga-
rithmic terms.
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Optimality

Mo =SNR > Crp®/*y/log(p)  (Our Requirement)
Mo =SNR > Cp®/* (Computational Feasibility)

— Optimal up to factors of the condition number « and loga-
rithmic terms.

— Tensor MMBM SNR condition is essentially optimal.

Note: \ ~ Aﬁ

r3/2
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Proof Strategy

@ Want to analyze the 7’th row of the random variable
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tensor and previous iterations.
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Proof Strategy

@ Want to analyze the 7’th row of the random variable
oY - u,wl

@ Show error is nearly linear combination of i’th row of the noise
tensor and previous iterations.

Problem

Previous iterations are not independent of i’th row of the noise
tensor.
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@ Are independent from i’th row of the noise.

@ Are sufficiently close to the true sequence ﬁgf).
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Proof Strategy

Problem

Previous iterations are not independent of i’th row of the noise
tensor.

Introduce special leave-one-out sequences that:
@ Are independent from i’th row of the noise.

@ Are sufficiently close to the true sequence ﬁgf).

Proof tracks three separate leave-one-out sequences (one for
each mode) and the true sequence simultaneously by lever-
aging independence between leave-one-out sequences and
noise.
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Analyzing Flight Network Data

@ Setting: observe time-series of counts of flights between US
airports from January 2016-September 2021

@ Results in a tensor 7 € R343x343x69 (girports x airports x
months)
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Analyzing Flight Network Data

@ Setting: observe time-series of counts of flights between US
airports from January 2016-September 2021

@ Results in a tensor 7 € R343x343x69 (girports x airports x
months)

@ To estimate the number of communities, we use the “elbow
method” (look for an elbow in the plot of the singular values).
Results inT = (3,3,4).

@ Report community membership intensities for each community
associated to pure nodes.
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Analyzing Flight Network Data: Airport Mode

Figure: Community associated to the pure node LAX = Los Angeles. Red means higher
membership intensity (closer to 1).
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Analyzing Flight Network Data: Airport Mode

Figure: Community associated to the pure node LGA= New York. Red means higher membership
intensity (closer to 1).
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Figure: Community associated to the pure node ATL = Atlanta. Red means higher membership
intensity (closer to 1).
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Analyzing Flight Network Data: Time Mode
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Analyzing Flight Network Data: Time Mode
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Analyzmg Fllght Network Data: Time Mode
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Conclusion

Main Question

Given a noisy high-dimensional p; x ps x p3 tensor with un-
derlying community structure, can we consistently estimate the
communities in the high dimensional regime p1,p2,p3 < p as
p — 00?
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Conclusion

Given a noisy high-dimensional p; x ps x ps tensor with un-
derlying community structure, can we consistently estimate the
communities in the high dimensional regime p1,p2,p3 < p as
p — 00?

Answer

Yes! The maximum row-wise error rate yields an improvement
of order ,/p for a p x p x p tensor relative to a p x p matrix!
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o Network time series
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Future and Ongoing Work

@ Multilayer networks:

e Ameliorating degree heterogeneity (Agterberg et al., 2022)

@ More general community models with estimation and testing
guarantees with multilayer networks

e Estimation accuracy in sparse network regimes

o Network time series

@ Tensor data analysis:
e Statistical inference for low-rank tensors by building upon £3
tensor perturbation bound
@ Perturbation bounds for tensor models with other notions of

low-rank and applications to other types of tensor data
e Robustness and sparsity

@ Spectral methods and nonconvex algorithms:
e Entrywise guarantees for other nonconvex matrix and tensor
algorithms under different noise models
e Inference with the outputs of nonconvex procedures
e Heterogeneous missingness mechanisms
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Correcting For Hubs

Observation

One community in the airport data was a hub community.
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Correcting For Hubs

Observation

One community in the airport data was a hub community.

Can we still obtain good estimation by accounting for hubs in
the model?
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Multilayer Degree-Corrected Stochastic Blockmodel
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Multilayer Degree-Corrected Stochastic Blockmodel

Interpretation

Observe the same communities across the networks, but the
means are different and vertices are permitted to differ between
and within networks.
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parameter 62@.

@ The mean matrix P() satisfies

(O M p® o
P,/ = 0;0; Bz(i)z(j)

Degree-Corrections Community Mean



References
O00@00000000

Multilayer Degree-Corrected Stochastic Blockmodel

@ Each vertex i belongs to community z(4).

@ Each vertex i has a layer-dependent degree-correction
parameter 01@.

@ The mean matrix P() satisfies

o _ OFI0) O
P,/ = 0;0; B =0
N—— N——

Degree-Corrections Community Mean

Accounting for Hubs

Parameters 95” allow for high-degree vertices, which al-
lows for hubs.
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Multilayer Degree-Corrected Stochastic Blockmodel

@ Each vertex i belongs to community z(4).

@ Each vertex i has a layer-dependent degree-correction
parameter ()Z@.

@ The mean matrix P() satisfies

W _ gy 0
Pij= 09 B.:0)
———

) Vv
Degree-Corrections Community Mean

Accounting for Hubs

Parameters 95” allow for high-degree vertices, which al-
lows for hubs.

Goal

Use all . networks to estimate community memberships.
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Theoretical Guarantees

Theorem (Informal Restatement of Theorem 1 of Agterberg et al.
(2022))

Consider a multilayer DCSBM with each network having the same
signal strength, and suppose each edge probability matrix has rank
K. Let z denote the output of clustering with K-means on the rows of
the output of DC-MASE, and define

- #misclustered nodes
UZ,2): = .
n
Then
El(Z,z) < 2K iexp — cL0; x (SNR-like term) ).
) - n — 3

Note: the same signal strength condition is not required in the main result.

Note: number of misclustered nodes is up to permutation of community labels.
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Improving Estimation?

@ Has been demonstrated that vanilla spectral clustering (using a
slightly different procedure) achieves the error rate:

2K <
El(Z, 2) < — —cb; SNR-like term) .
(zZ,2) < - ;exp< i x ( [ ))
@ In contrast, our results show that

2K —
El(Z < — —clLb; SNR-like t .
0(z,2) < - Zexp( cL; x (@ R-like erm))

=1
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Improving Estimation?

@ Has been demonstrated that vanilla spectral clustering (using a
slightly different procedure) achieves the error rate:

2K <
El(Z, 2) < — —cb; SNR-like term) .
(zZ,2) < - ;exp< i x ( [ ))
@ In contrast, our results show that

2K :
E((3,2) < 2= — ¢L6; x (SNR-like t .
(7Z,2) < - Zexp( cLf; x (SNR-like erm))

=1

Key Takeaway

Multiple networks improve estimation guarantees (relative to
the single network setting).
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Multilayer Degree-Corrected Stochastic Blockmodel

@ Each vertex i belongs to community z(¢).
@ The adjacency matrix A" for layer I satisfies

Az(é') ~ Bernouﬂi(Pl(-;)) i < j independently.

@ The mean matrix PO satisfies

Pl — gyl BY.
tj i z(4)z(4)

Degree-Corrections Community Mean
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Multilayer Degree-Corrected Stochastic Blockmodel

@ Each vertex i belongs to community z(¢).
@ The adjacency matrix A" for layer I satisfies

A ~ Bernoulli(PY) i < j independently.

@ The mean matrix PO satisfies

pO_ g0 BO
g vy 2(i)z(j)
~—— N——

Degree-Corrections Community Mean

Use all L networks to estimate community memberships.
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Spectral Geometry

Observation 1

Each population network is rank K, with rows of scaled eigenvectors
supported on one of K rays, where K is the number of communities.

Rows of scaled eigenvectors of population adjacency matrix, viewed as points in
dimension K = 3
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Spectral Geometry

Observation 2

Projecting each ray to the sphere results in community memberships
for a single network.

Rows of scaled eigenvectors of population adjacency matrix, viewed

N ! 3 Row-normalized scaled eigenvectors of population adjacency matrix,
as points in dimension K = 3

viewed as points in dimension KX = 3
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Spectral Geometry

Observation 3

n x LK matrix of concatenated row-normalized embedding has left
singular subspace that reveals community memberships for all net-
works.

| }I l Rows of left singular vectors viewed as points in dimension K = 3

n X L K matrix of concatenated row-normalized embedding.
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