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Tensor Data

A tensor is a multidimensional array.

Vector Matrix Order 3 Tensor

Can have higher-order tensors T ∈ Rp1×···×pd .
This talk: focus on order 3 tensors.
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Examples of Tensor Data

Matrix time series

Mt =



Apple Twitter Tesla · · ·

Revenuet X
(t)
11 X

(t)
12 X

(t)
13 · · ·

Assetst X
(t)
21 X

(t)
22 X

(t)
23 · · ·

Dividends per sharet X
(t)
31 X

(t)
32 X

(t)
33 · · ·

... · · · · · · · · ·
. . .



Brain imaging data
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Special Case: Multilayer Networks

Setting

Observe L networks on same n vertices
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Multilayer Networks

Identify each network with its adjacency matrix:

Organize adjacency matrices into n× n× L Tensor!
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This Talk

Main Question

Given a noisy high-dimensional p1 × p2 × p3 tensor with un-
derlying community structure, can we consistently estimate the
communities in the high dimensional regime p1, p2, p3 ≍ p as
p → ∞?



10/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Outline

1 Motivation

2 Community Models

3 Estimation Algorithm

4 ℓ2,∞ Tensor Perturbation

5 Data Analysis

6 Conclusion



11/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Tensor Blockmodels

︸ ︷︷ ︸
Observation

=

︸ ︷︷ ︸
Signal

+

︸ ︷︷ ︸
Noise

Interpretation

There are rk communities for each mode (k = 1, 2, 3), and
each node belongs to one community.
Entry i1, i2, i3 of the signal tensor is determined by
community memberships of nodes i1, i2, and i3.
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Tensor Blockmodels

Interpretation

There are rk communities for each mode (k = 1, 2, 3), and
each node belongs to one community.
Entry i1, i2, i3 of the signal tensor is determined by
community memberships of nodes i1, i2, and i3.

Example I:
Multilayer network with airports, airports, and airlines as the
modes.

Each airport belongs to one of r1 communities (r1 = r2).
Each airline belongs to one of r3 communities.
i1, i2, i3 entry of the signal tensor is governed by mean
associated to memberships of airport i1, airport i2, and airline i3.
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Tensor Blockmodels

Interpretation

There are rk communities for each mode (k = 1, 2, 3), and
each node belongs to one community.
Entry i1, i2, i3 of the signal tensor is determined by
community memberships of nodes i1, i2, and i3.

Example II:
Multilayer network with airports, airports, and time as the modes.

Each airport belongs to one of r1 communities (r1 = r2).
Each time belongs to one of r3 communities.
i1, i2, i3 entry of the signal tensor is governed by mean
associated to memberships of airport i1, airport i2, and time i3.
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Tensor Mixed-Membership Blockmodels

︸ ︷︷ ︸
Observation

=

︸ ︷︷ ︸
Signal

+

︸ ︷︷ ︸
Noise

Interpretation

There are rk communities for each mode and each node
belongs to a convex combination of communities.
Entry i1, i2, i3 of the signal tensor is determined by
community membership vectors of nodes i1, i2, i3.
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Tensor Mixed-Membership Blockmodels

Interpretation

There are rk communities for each mode and each node
belongs to a convex combination of communities.
Entry i1, i2, i3 of the signal tensor is determined by
community membership vectors of nodes i1, i2, i3.

Example I:
Multilayer network with airports, airports, and airlines as the
modes.

Each airport belongs to convex combination of r1 communities
(r1 = r2).
Each airline belongs to convex combination of r3 communities.
i1, i2, i3 entry of the signal tensor is governed by weighted sum of
community means associated to airport i1, airport i2, and airline
i3.
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Interpretation

There are rk communities for each mode and each node
belongs to a convex combination of communities.
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Tensor Mixed-Membership Blockmodels

Ti1i2i3 =

r1∑
l1=1

r2∑
l2=1

r3∑
l3=1

Sl1l2l3

(
Π1

)
i1l1

(
Π2

)
i2l2

(
Π3

)
i3l3

1 ≤ ik ≤ pk;

T = S ×1 Π1 ×2 Π2 ×3 Π3;

S ∈ Rr1×r2×r3 is a Mean Tensor;

Πk ∈ [0, 1]pk×rk are Mixed−Membership Matrices (∥
(
Πk

)
i·∥1 = 1)

Interpretation

There are rk communities for each mode.
S ∈ Rr1×r2×r3 encodes the community means.
ik ’th row of Πk ∈ [0, 1]pk×rk tells us how much node ik
belongs to each community.
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Tensor Mixed-Membership Blockmodels

Interpretation

There are rk communities for each mode.
S ∈ Rr1×r2×r3 encodes the community means.
ik ’th row of Πk ∈ [0, 1]pk×rk tells us how much node ik
belongs to each community.

Underlying Tensor T ∈ Rp1×p2×p3 .

Extract Π1======⇒

p1 Rows of matrix Π1 .
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Identifiability

Observation: if Πk ∈ {0, 1}pk×rk then T is a tensor blockmodel.

If row ik of Πk is {0, 1}-valued, we say ik is a pure node.

Proposition

Suppose each mode contains at least one pure node for each
community and S is full rank. Then the model is identifiable up to
community relabeling.

Full rank: S can be written as matrix in three different ways – each of these is full rank.

Goal

Estimate community membership matrices Π1,Π2, and Π3 ∈
[0, 1]pk×rk .
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Brief Detour: Tucker Decompositions and Tensor SVD

Matrix SVD:

≈

No unified notion of Tensor SVD!
Tensor mixed-membership blockmodel is related to Tucker
decomposition

≈
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Brief Detour: Tucker Decomposition and Tensor SVD

≈

Definition

A tensor T is rank r = (r1, r2, r3) if r is the smallest triplet such that

T = C ×1 U1 ×2 U2 ×3 U3;

C ∈ Rr1×r2×r3 is a core tensor;

Uk ∈ Rpk×rkare orthonormal loading matrices.

Note: generalizes matrix SVD to higher-order.
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Spectral Geometry

Proposition

Suppose T = S ×1 Π1 ×2 Π2 ×3 Π3 is a tensor MMBM such that S is
full rank with a pure node for each community along each mode. Let
T = C ×1 U1 ×2 U2 ×3 U3 be the rank (r1, r2, r3) Tucker factorization.
Then

Uk = ΠkU
(pure)
k ,

where U
(pure)
k ∈ Rrk×rk consists of the rows of Uk corresponding to

pure nodes for mode k.

Geometric Insight

Rows of loading matrices of T belong to a simplex with corners
determined by pure nodes!
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Spectral Geometry

Geometric Insight

Rows of loading matrices of T belong to a simplex with corners
determined by pure nodes!

Rows of matrix Π1 .

U
(pure)
1=====⇒

Rows of loading matrix U1 .
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Estimation Procedure

Key Idea

Given an observation T̂ = T +Noise:
1 First estimate the loading matrices U1,U2, and U3.
2 Next estimate pure nodes by finding the corners of the

simplex associated to rows of Uk (standard corner-finding
algorithms exist)

3 Estimate Πk via plug-in from the equation
Πk = Uk

(
U

(pure)
k

)−1.

Problem

Need to estimate the loading matrices!
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Higher-Order SVD

First straightforward guess: use leading rk left singular vectors of
Mk(T̂ )

Mk(T̂ )
=====⇒ rk left singular vectors

============⇒

Problem: can be suboptimal in high-noise regime!
Why? Higher-Order SVD ignores tensor structure.

Solution

Iteratively refine the initial estimate using tensor structure!
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Higher-Order Orthogonal Iteration

Given previous iterate Û
(t−1)
k update Û

(t)
k via

Û
(t)
1 = r1 left singular vectors of M1

(
T̂ ×2 Û

(t−1)
2 ×3 Û

(t−1)
3

)
;

Û
(t)
2 = r2 left singular vectors of M2

(
T̂ ×3 Û

(t−1)
3 ×1 Û

(t)
1

)
;

Û
(t)
3 = r3 left singular vectors of M3

(
T̂ ×1 Û

(t)
1 ×2 Û

(t)
2

)
.

Intuition: preserves singular subspace, but greatly reduces noise!

×2Û
(t−1)
2 ×3Û

(t−1)
3============⇒

Warm start: use modified spectral initialization to account for
heteroskedastic noise.
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(t−1)
k update Û
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Û
(t)
1 = r1 left singular vectors of M1

(
T̂ ×2 Û
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Û
(t)
1 = r1 left singular vectors of M1

(
T̂ ×2 Û
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Full Estimation Procedure

Given a tensor T̂ = T +Noise ∈ Rp1×p2×p3 :

Estimate loading matrices (singular vectors) via HOOI, obtaining
estimates {Ûk}3k=1 with Ûk ∈ Rpk×rk .
For k = 1, 2, 3:

Estimate pure nodes via a corner finding algorithm and obtain
Û

(pure)
k .

Estimate Πk via

Π̂k = Ûk(Û
(pure)
k )−1.
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Estimate pure nodes via a corner finding algorithm and obtain
Û

(pure)
k .

Estimate Πk via

Π̂k = Ûk(Û
(pure)
k )−1.
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Û

(pure)
k .

Estimate Πk via

Π̂k = Ûk(Û
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Theoretical Guarantees

Theorem (Agterberg and Zhang (2022))

Suppose that:
(Identifiability) each mode contains at least one pure node for
each community and S is full rank.

(Regime) that rk ≍ r and pk ≍ p with r ≤ Cp1/2

(Signal) S has smallest singular value ∆ and condition number κ;
(Noise) the noise is independent with variance at most σ2;

(SNR) ∆2

σ2 ≥ C κ2r3 log(p)
p3/2 .

Let Π̂k ∈ [0, 1]pk×rk denote the estimated memberships with
t ≍ log( κr3/2

(∆/σ)p1/2 ) iterations for HOOI. Then there exist permutation
matrices {Pk} such that with probability at least 1− p−10 it holds that

max
1≤i≤pk

∥
(
Π̂k −ΠkPk

)
i·∥ ≤ C

κr3/2
√
log(p)

(∆/σ)p
.
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Comparison to Matrix Setting

For matrix mixed-membership blockmodel, it was previously
shown that

max
i

∥
(
Π̂(Matrix) −Π(Matrix)P

)
i·∥ = Õ

(
1

SNR×√
p

)
.

Using HOOI, our results show that

max
i

∥
(
Π̂k −ΠkPk

)
i·∥ = Õ

(
1

SNR× p

)
.

Key Takeaway

Higher-order structures improve estimation guarantees relative
to the matrix setting.

Note: higher-order SVD results in row-wise error O(1).
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(
1

SNR×√
p

)
.

Using HOOI, our results show that

max
i

∥
(
Π̂k −ΠkPk

)
i·∥ = Õ
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(
1

SNR×√
p

)
.

Using HOOI, our results show that

max
i

∥
(
Π̂k −ΠkPk

)
i·∥ = Õ

(
1

SNR× p

)
.

Key Takeaway

Higher-order structures improve estimation guarantees relative
to the matrix setting.

Note: higher-order SVD results in row-wise error O(1).



31/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Outline

1 Motivation

2 Community Models

3 Estimation Algorithm

4 ℓ2,∞ Tensor Perturbation

5 Data Analysis

6 Conclusion



32/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Proof Idea

Recall the bound:

max
i

∥
(
Π̂k −ΠkPk

)
i·∥ = Õ

(
1

SNR× p

)
.

Since Π̂k = Ûk

(
Û

(pure)
k

)−1, we need to ensure that:
The pure nodes are found correctly with high probability;
Ûk is sufficiently close to Uk.

Need to show that each row of Ûk is sufficiently close to Uk

with high probability.
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Technical Tool: ℓ2,∞ Perturbation Bound

Theorem ( Agterberg and Zhang (2022))

Let T be a rank (r1, r2, r3) tensor with Tucker decomposition
T = C ×1 U1 ×2 U3 ×U3. Suppose that

(Regime) that rk ≍ r and pk ≍ p with r ≤ Cp1/2

(Signal) C has smallest singular value λ and condition number κ;
(Noise) the noise is independent with variance at most σ2

(SNR) λ/σ ≥ Cκp3/4
√
log(p).

Let Û(t)
k ∈ Rpk×rk denote the estimated loadings (singular vectors)

from HOOI with t ≍ log
(

κp
λ/σ

)
. Then there exists an orthogonal matrix

W
(t)
k such that

max
1≤i≤pk

∥∥(Û(t)
k −UkW

(t)
k

)
i·

∥∥ ≤ C

√
rk log(p)

λ/σ
.
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∥∥(Û(t)
k −UkW

(t)
k

)
i·

∥∥ ≤ C

√
rk log(p)

λ/σ
.



33/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Technical Tool: ℓ2,∞ Perturbation Bound

Theorem ( Agterberg and Zhang (2022))

Let T be a rank (r1, r2, r3) tensor with Tucker decomposition
T = C ×1 U1 ×2 U3 ×U3. Suppose that

(Regime) that rk ≍ r and pk ≍ p with r ≤ Cp1/2

(Signal) C has smallest singular value λ and condition number κ;
(Noise) the noise is independent with variance at most σ2

(SNR) λ/σ ≥ Cκp3/4
√

log(p).

Let Û(t)
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Previous Bounds

∥Û(t)
k −UkW

(t)
k ∥F ≤ C

√
pk

SNR
(Previous Work)

max
1≤i≤pk

∥
(
Û

(t)
k −UkW

(t)
k

)
i·∥ ≤ C

κ
√
rk log(p)

SNR
(Our Work)

=⇒ Errors are spread out along each row!

Note: result also depends on spread-outedness of the tensor.
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Optimality

λ/σ = SNR ≥ Cκp3/4
√
log(p) (Our Requirement)

λ/σ = SNR ≥ Cp3/4 (Computational Feasibility)

=⇒ Optimal up to factors of the condition number κ and loga-
rithmic terms.

=⇒ Tensor MMBM SNR condition is essentially optimal.

Note: λ ≈ ∆ p3/2

r3/2



35/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Optimality

λ/σ = SNR ≥ Cκp3/4
√
log(p) (Our Requirement)

λ/σ = SNR ≥ Cp3/4 (Computational Feasibility)

=⇒ Optimal up to factors of the condition number κ and loga-
rithmic terms.

=⇒ Tensor MMBM SNR condition is essentially optimal.

Note: λ ≈ ∆ p3/2

r3/2



35/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Optimality

λ/σ = SNR ≥ Cκp3/4
√
log(p) (Our Requirement)

λ/σ = SNR ≥ Cp3/4 (Computational Feasibility)

=⇒ Optimal up to factors of the condition number κ and loga-
rithmic terms.

=⇒ Tensor MMBM SNR condition is essentially optimal.

Note: λ ≈ ∆ p3/2

r3/2



36/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Proof Strategy

Want to analyze the i’th row of the random variable
Û

(t)
1 −U1W

(t)
1

Show error is nearly linear combination of i’th row of the noise
tensor and previous iterations.

Problem

Previous iterations are not independent of i’th row of the noise
tensor.
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Û

(t)
1 −U1W

(t)
1

Show error is nearly linear combination of i’th row of the noise
tensor and previous iterations.

Problem

Previous iterations are not independent of i’th row of the noise
tensor.



37/62

Motivation Community Models Estimation Algorithm ℓ2,∞ Tensor Perturbation Data Analysis Conclusion References

Proof Strategy

Problem

Previous iterations are not independent of i’th row of the noise
tensor.

Solution

Introduce special leave-one-out sequences that:
Are independent from i’th row of the noise.

Are sufficiently close to the true sequence Û
(t)
k .

Proof tracks three separate leave-one-out sequences (one for
each mode) and the true sequence simultaneously by lever-
aging independence between leave-one-out sequences and
noise.
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Analyzing Flight Network Data

Setting: observe time-series of counts of flights between US
airports from January 2016-September 2021
Results in a tensor T̂ ∈ R343×343×69 (airports × airports ×
months)

To estimate the number of communities, we use the “elbow
method” (look for an elbow in the plot of the singular values).
Results in r̂ = (3, 3, 4).
Report community membership intensities for each community
associated to pure nodes.
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Analyzing Flight Network Data: Airport Mode

Figure: Community associated to the pure node LAX = Los Angeles. Red means higher
membership intensity (closer to 1).
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Analyzing Flight Network Data: Airport Mode

Figure: Community associated to the pure node LGA= New York. Red means higher membership
intensity (closer to 1).
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Analyzing Flight Network Data: Airport Mode

Figure: Community associated to the pure node ATL = Atlanta. Red means higher membership
intensity (closer to 1).
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Analyzing Flight Network Data: Time Mode
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Conclusion

Main Question

Given a noisy high-dimensional p1 × p2 × p3 tensor with un-
derlying community structure, can we consistently estimate the
communities in the high dimensional regime p1, p2, p3 ≍ p as
p → ∞?

Answer

Yes! The maximum row-wise error rate yields an improvement
of order

√
p for a p× p× p tensor relative to a p× p matrix!
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Future and Ongoing Work

Multilayer networks:
Ameliorating degree heterogeneity (Agterberg et al., 2022)
More general community models with estimation and testing
guarantees with multilayer networks
Estimation accuracy in sparse network regimes
Network time series

Tensor data analysis:
Statistical inference for low-rank tensors by building upon ℓ2,∞
tensor perturbation bound
Perturbation bounds for tensor models with other notions of
low-rank and applications to other types of tensor data
Robustness and sparsity

Spectral methods and nonconvex algorithms:
Entrywise guarantees for other nonconvex matrix and tensor
algorithms under different noise models
Inference with the outputs of nonconvex procedures
Heterogeneous missingness mechanisms
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Thank you!

7: @JAgterberger
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Correcting For Hubs

Observation

One community in the airport data was a hub community.

Question

Can we still obtain good estimation by accounting for hubs in
the model?
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Multilayer Degree-Corrected Stochastic Blockmodel

Interpretation

Observe the same communities across the networks, but the
means are different and vertices are permitted to differ between
and within networks.
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Multilayer Degree-Corrected Stochastic Blockmodel

Each vertex i belongs to community z(i).

Each vertex i has a layer-dependent degree-correction
parameter θ(l)i .
The mean matrix P(l) satisfies

P
(l)
ij = θ

(l)
i θ

(l)
j︸ ︷︷ ︸

Degree-Corrections

B
(l)
z(i)z(j)︸ ︷︷ ︸

Community Mean

.

Accounting for Hubs

Parameters θ
(l)
i allow for high-degree vertices, which al-

lows for hubs.

Goal

Use all L networks to estimate community memberships.
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DC-MASE: Degree-Corrected Multiple Adjacency
Spectral Embedding
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Theoretical Guarantees

Theorem (Informal Restatement of Theorem 1 of Agterberg et al.
(2022))

Consider a multilayer DCSBM with each network having the same
signal strength, and suppose each edge probability matrix has rank
K. Let ẑ denote the output of clustering with K-means on the rows of
the output of DC-MASE, and define

ℓ(ẑ, z) : =
#misclustered nodes

n
.

Then

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cLθi ×

(
SNR-like term

))
.

Note: the same signal strength condition is not required in the main result.

Note: number of misclustered nodes is up to permutation of community labels.
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Improving Estimation?

Has been demonstrated that vanilla spectral clustering (using a
slightly different procedure) achieves the error rate:

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cθi ×

(
SNR-like term

))
.

In contrast, our results show that

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cLθi ×

(
SNR-like term

))
.

Key Takeaway

Multiple networks improve estimation guarantees (relative to
the single network setting).
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Analyzing Flight Network Data

Community 1 2 3 4
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Multilayer Degree-Corrected Stochastic Blockmodel

Each vertex i belongs to community z(i).

The adjacency matrix A(l) for layer l satisfies

A
(l)
ij ∼ Bernoulli(P

(l)
ij ) i ≤ j independently.
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Spectral Geometry

Observation 1

Each population network is rank K, with rows of scaled eigenvectors
supported on one of K rays, where K is the number of communities.

Population adjacency matrix Rows of scaled eigenvectors of population adjacency matrix, viewed as points in
dimension K = 3
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Spectral Geometry

Observation 2

Projecting each ray to the sphere results in community memberships
for a single network.

Rows of scaled eigenvectors of population adjacency matrix, viewed
as points in dimension K = 3

Row-normalized scaled eigenvectors of population adjacency matrix,
viewed as points in dimension K = 3
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Spectral Geometry

Observation 3

n × LK matrix of concatenated row-normalized embedding has left
singular subspace that reveals community memberships for all net-
works.

n × LK matrix of concatenated row-normalized embedding.
Rows of left singular vectors viewed as points in dimension K = 3
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