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1 Notation

For ease of comparision, I’ll use the same notation.
Throughout, let:

• A ∈ {0, 1}n×n be the symmetric adjacency matrix for a graph.

• B is the K ×K symmetric block connectivity matrix.

• Z ∈ {0, 1}n×K is the matrix satisfying Zik = 1 if vertex i belongs to community k and 0 otherwise.

• For a given matrix M define the laplacian L(M) := D−1/2MD−1/2, where D is the diagonal matrix
Diag(M1) (1 is the vector of all ones) (i.e. D is the degree matrix).

• Define ∆ := maxi
∑n
j=1 Pij ; i.e. ∆ is the maximum expected degree

• δ = mini
∑n
j=1 Pij .

• Define τn = δ/∆, the min expected degree divided by the max expected degree.

• I will use ρn as the sparsity parameter (see e.g. Cape et al. (2019); Tang et al. (2017); Tang and Priebe
(2018))

• We let P := EA. For a stochastic blockmodel, we note that P = ZBZ> with self-loops and ZBZ> −
Diag(ZBZ>) without self-loops. I won’t worry too much about self-loops here, but sometimes they
can be pretty important (e.g. Han et al. (2019)).

Finally, when I refer to the Davis-Kahan Theorem, I mean the following.

Theorem 1 (Davis-Kahan, some variant). Suppose M̂ = M +E. Suppose M is rank d. Let Û be the n× d
matrix whose columns are the top d eigenvectors of M̂ and similarly for U . Then

inf
W∈O(d)

||U − ÛW ||2,F ≤
||E||2,F

γ
,

where γ is such that the eigenvalues of M lie in an interval (a, b) and n − d bottom eigenvalues of M̂ lie
outside the interval (a− γ, b+ γ).

If you do not know this already, lots of applications of Davis-Kahan really only need information about
the order of the terms appearing on the right hand side.

For example, when everything is nice and dense (i.e. ρn ≡ 1), we have

• ||E||2 .
√
n with high probability

• λ1, ..., λd(P ) = Θ(n) with high probability,
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• λd+1(P ), ..., λn(P ) ≡ 0

Weyl’s inequality shows that

|λi(P )− λi(A)| ≤ ||E||2 .
√
n,

so that the bottom n− d eigenvalues of A are of smaller order than
√
n and the top d eigenvalues of A are

of order n. Then the n − d bottom eigenvalues of A lie outside the interval (λd(P ) − Cn, λ1(P ) + Cn) for
some C < λd(P ) (since the order of this interval is n), so we apply the theorem above with γ = Cn. The
theorem then reads that

inf
W∈O(d)

||U − ÛW ||2 .
1√
n
.

Subsequent analyses focus on explicitly examining the dependence on the hidden constants (eigenvalues of
P , number of blocks, rank, etc.) in the right hand side as well as allowing for sparsity.

2 Notes on Rohe et al. (2011)

The high-level overview of the paper is a study of the performance of spectral clustering using the leading
eigenvectors of L(A). Their main idea is to combine a concentration result on the Laplacian with the
Davis-Kahan Theorem, showing that (in Frobenius norm), the empirical eigenvectors are close to the true
eigenvectors with high probability. They also use one of my favorite tricks when they square the matrices
and note that the eigenvectors of the squared matrices are the same as the original eigenvectors – I used this
trick this most recent December as part of a proof, even though I never ended up needing that proof.

Their first main result is a concentration bound.

Theorem 2 (Theorem 2.1). If τ2n log(n) > 2 for all n, then

||L(A)2 − L(P )2||F = o

(
log(n)

τ2n1/2

)
almost surely.

This is (essentially) just a concentration bound for the (squared) empirical Laplacian versus the true
Laplacian in Frobenius norm. The theorem in L. Lu and X. Peng (2013) reads as

||L(A)− L(P )|| . δ−1/2

with high probability provided that δ � log(n). In Rohe et al. (2011), the authors do not assume any
sparsity, so they define τn = δ/n. Therefore, their τn is of order δ/n, so that their assumption reads that

δ ≥ C n√
log(n)

,

which is only slightly slower than order n. So their requirement is much more stringent than Lu and Peng’s.

With this notation, their result reads as o

(
n3/2 log(n)

δ2

)
, which, when δ > n√

log(n)
gives a bound of order

o

(
log2(n)√

n

)
, which is a factor of log2(n) worse under the same assumptions as L. Lu and X. Peng (2013)

(though it is an o(·) and not an O(·)). However, we should note that this was written before L. Lu and X.
Peng (2013) came out, so they had to do it from scratch.

Their main result is as follows.
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Theorem 3 (Theorem 3.1). IfM is the set of misclustered nodes, then

|M| = o

(
nmax log2(n)

λ2kn(L(P ))τ4nn

)
,

provided that log2(n)
n1/2 = O(λ2kn(L(P ) and τ2 log(n) > 2, where nmax is the maximum number of nodes in each

community.

In the special case B = ρnB0 for some (constant) rank K matrix B0, we have that λkn(L(P )) = Θ(1).
Recall τn = δ

n , where δ is the minimum expected degree. If nmax � n, then this bound reads as

o

(
n4 log2(n)

δ4

)
= o

(
n4 log2(n)

(nρn)4

)
= o

(
log2(n)

ρ4n

)
,

so that the average number of miclustered nodes satisfies

1

n
|M| = o

(
log2(n)

nρ4n

)
.

General notes:

• The proof of their theorem combines the Davis-Kahan Theorem and their concentration results using
the squared values.

• The requirement on the rate of convergence of λ2kn(L(P )) to zero is a requirement on the eigengap
implicitly required by applying the Davis-Kahan Theorem. In other words, if this rate of convergence
happens, all the top eigenvalues of L(A) will be of much larger order so that the Davis-Kahan Theorem
can be applied. (Recall that eigenvalues of the Laplacian are between 0 and 2)

• Finally, the appearance of the nmax in their theorem comes from bounding the size of M directly.

• Slightly tighter results can be found now using stronger concentration results and 2→∞ type bounds,
but I think the key point is that their results were amongst the first to combine these tools in a
meaningful way.

Finally, I really like their Lemma 3.1, which shows that the eigenvectors of L(P ) contain the community
information.

3 Notes on Lei and Rinaldo (2015)

Again, the high level overview is what happens when applying spectral clustering to the eigenvectors of the
adjacency matrix. Their results focus highly on the sparse regime wherein they assume an explicit sparsity
parameter (they say αn, but I will say ρn to use the slightly more common notation). I will not worry
so much about their results on the degree-corrected stochastic blockmodel so as to compare to Rohe et al.
(2011).

One of their main results concerns a concentration bound.

Theorem 4 (Theorem 5.2). Suppose nmaxi,j Pij ≤ ∆ for ∆ ≥ c0 log(n) for some c0 > 0. Then for any r
there exists C = C(r, c0) such that

||A− P || ≤ C
√

∆

with probability at least 1− n−r.

3



As far as I know, this has the weakest assumptions and the strongest concentration (though L. Lu and
X. Peng (2013) only requires ∆ � log4(n), which is not that much less sparse). Their bound is still used
often; it was used quite recently in a Biometrika paper with Liza Levina.

Their result on the spectral clustering performance is as follows.

Theorem 5. Suppose P = ZBZ> is of rank K, and suppose maxk,lBkl ≤ Cρn for some ρn ≥ c0 log(n)/n.
Then there exists an absolute constant c such that if

(2 + ε)
Knρn
λd(P )

< c,

then

K∑
k=1

|Sk|
nk
≤ c−1(2 + ε)

Knρn
λd(P )

,

where Sk are the sets of incorrectly clustered vertices.

This theorem is in the same spirit to the previous theorem; it gives a bound on the number of misclustered
vertices in terms of stochastic blockmodel parameters. The ε is just for theoretical reasons but really makes
no material difference.

They also present a corollary for interpretation.

Corollary 6 (Corollary 3.2). Suppose B = ρnB0 for some ρn satisfying nρ ≥ C log(n), and suppose
maxk,l(B0)k,l = 1. Then there exists an absolute constant c such that if

(2 + ε)
Kn

n2minλK(B0)2ρn
< c

then with probability 1− n−1,

1

n
|M| ≤ c−1(2 + ε)

Knmax

n2minλK(B0)2ρn

The remark under this Corollary shows that to match their result to Rohe et al. (2011), they only require

ρn >
log(n)
n , whereas Rohe et al. (2011) requires ρn >

1
log(n) (though this was a little buried earlier).

In particular, under the special conditions we analyzed in the previous section with approximately equal
cluster sizes nmax � nmin, we see that

1

n
|M| . 1

nρn
,

which is better then Rohe et al. (2011) by a factor of log2(n)
ρ3n

. Recall we often examine the regime in which

ρn → 0, in which case this bound does much better.

4 Comparisons and Talking Points

• Two of my favorite lemmas are Lemma 3.1 in Rohe et al. (2011) and Lemma 2.1 in Lei and Rinaldo
(2015), in which the authors compare the eigenstructure of the population matrices. This to me clarifies
a few things in particular:

– It shows why we care about the rows of the leading eigenvectors for community recovery in the
SBM (and shows why it is a nice jumping-off point for the scaled eigenvectors in the analysis of
RDPGs)
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– K-means will eventually do great clustering if n is sufficiently large

– If we expect a row-wise CLT, the scaling will be by n in the dense case (ρn ≡ 1) (indeed, this is
the scaling in both Cape et al. (2019) and Tang and Priebe (2018) )

– (Exercise) staring at the proof of Lemma 3.1 in Rohe et al. (2011) and Lemma 2.1 in Lei and
Rinaldo (2015) shows that the eigenvector differences of the Laplacian are the same order and
magnitude as in the adjacency matrix. In other words, one can show that the eigenvectors of the
Laplacian have similar properties to those of ZBZ> in community recovery.

• How do these bounds translate to 2→∞ or entrywise max bounds?

• Why might we care about 2→∞ or entrywise max bounds?

• How much do these results depend on the full rank assumption of B?

• Lei and Rinaldo (2015) also studies the DCSBM. For what types of models will we want to scale by
the square roots of the eigenvalues?

• How do current entrywise eigenvector bounds extend and refine these bounds (both the results and
proofs)?

• How do these results inform our understanding of more complicated models like the MMSBM, DCMMSBM,
or (G)RDPG? (recall the MMSBM has the form ZBZ> like the SBM, only Z is a matrix whose rows
sum to 1, and the DCMMSBM is of the form DZBZ>D, where D is the diagonal degree-correction
parameter. The (G)RDPG is just the property that P is a fixed rank).
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