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Multilayer Networks

Setting

Observe L networks on same n vertices
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Stochastic Blockmodels

(a) Population Adjacency
Matrix

(b) Observed Adjacency Matrix
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Multilayer Networks

Multilayer SBM (e.g. (Lei and Lin, 2022; Lei et al., 2020))
incorporates network-level idiosyncracies:

Other examples:

Mixture of multilayer SBMs (Jing
et al., 2021; Fan et al., 2021)

DIMPLE model (Pensky and Wang,
2021; Noroozi and Pensky, 2022)

COSIE model (Arroyo et al., 2021)

More... (Young et al., 2022; Jones
and Rubin-Delanchy, 2020)

Problem

Vertices act similarly between net-
works!
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Multilayer DCSBM

Solution

Introduce network-specific degree corrections

Maintains:

1 Global community
structure

2 Network-level
idiosyncrasies

3 Vertex-level idiosyncrasies

Inference Task

Recover communities!
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Spectral Geometry

Observation 1

Each population network is rank K, with rows of scaled eigen-
vectors supported on one of K rays, where K is the number of
communities.

Population adjacency matrix Rows of scaled eigenvectors of population adjacency matrix, viewed
as points in dimension K = 3
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Spectral Geometry

Observation 2

Projecting each ray to the sphere results in community mem-
berships for a single network.

Rows of scaled eigenvectors of population adjacency
matrix, viewed as points in dimension K = 3

Row-normalized scaled eigenvectors of population
adjacency matrix, viewed as points in dimension K = 3
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Spectral Geometry

Observation 3

n×LK matrix of concatenated row-normalized embedding has
left singular subspace that reveals community memberships for
all networks.

n × LK matrix of concatenated row-normalized
embedding.

Rows of left singular vectors viewed as points in
dimension K = 3



Motivation Our Procedure Theoretical Results Numerical Results Conclusion References

DC-MASE: Degree-Corrected Multiple Adjacency
Spectral Embedding
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DC-MASE: Degree-Corrected Multiple Adjacency
Spectral Embedding

n × LK matrix of concatenated row-normalized
embedding of each observed adjacency matrix.

Rows of left singular vectors of the matrix on the left,
viewed as points in dimension K = 3
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Theoretical Guarantees

Theorem (Informal Restatement of Theorem 1 of Agterberg
et al. (2022))
Consider a multilayer DCSBM with each network having the
same signal strength, and suppose each edge probability
matrix has rank K and that each node has degree correction
parameter θi. Let ẑ denote the output of clustering with
K-means on the rows of the output of DC-MASE, and define

ℓ(ẑ, z) : =
#misclustered nodes

n
.

Then

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cLθi ×

(
SNR-like term

))
.

Note: the same signal strength condition is not required in the main result.

Note: number of misclustered nodes is up to permutation of community labels.
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Improving Estimation?

Has been demonstrated that vanilla spectral clustering
(using a slightly different procedure) achieves the error
rate:

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cθi ×

(
SNR-like term

))
.

In contrast, our results show that

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cLθi ×

(
SNR-like term

))
.

Key Takeaway

Multiple networks improve estimation guarantees (relative
to the single network setting).
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Simulated Data

Figure: Performance of DC-MASE on networks with severe degree heterogeneity
between networks. In each community, half of the degree corrections are one value,
and half of the degrees are another value, and these switch between networks.
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Flight Network Data

Figure: Network of flights– each network is a month of flights between airports
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Tracking Flights

Figure: Average flights in each community over time



Motivation Our Procedure Theoretical Results Numerical Results Conclusion References

Tracking Degree-Corrections

Figure: Estimated degree-corrections within each community over time
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Tracking Degree-Corrections

Figure: Estimated Degree-Corrections for some airports in the first community over
time



Motivation Our Procedure Theoretical Results Numerical Results Conclusion References

Outline

1 Motivation

2 Our Procedure

3 Theoretical Results

4 Numerical Results

5 Conclusion



Motivation Our Procedure Theoretical Results Numerical Results Conclusion References

Conclusion

The Multilayer DCSBM model allows for:

Global community structure
Layer heterogeneity in the connection probabilities between
clusters
Vertex heterogeneity within and between networks

DC-MASE accounts for vertex and layer heterogeneity but still
benefits from multiple observations and shared community
structure
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Thank you!

7: @JAgterberger
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Multilayer DCSBM

Formally:

Observe L (symmetric) adjacency matrices
A(1), . . . ,A(L) ∈ {0, 1}n×n on same n vertices

Each vertex belongs to one of K communities; set z : [n] → [K]
as the assignment vector

Upper triangles of each adjacency matrix satisfy

A
(l)
ij ∼ Bernoulli(θ

(l)
i θ

(l)
j B

(l)
z(i),z(j))

independently

Each matrix A(l) satisfies

EA(l) = Θ(l)ZB(l)Z⊤Θ(l),

where Zik = 1 if z(i) = k
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Community Separation

Two important quantities:

λ
(l)
min = absolute value of

smallest nonzero eigenvalue
of B(l). Example:

B(l) =

(
1 1− λ

1− λ 1

)

Average community
separation

λ̄ =
1

L

L∑
l=1

λmin.
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Degree Heterogeneity

∥θ(l)∥3
3

∥θ(l)∥4 and θ(l)
max

∥θ(l)∥2 measure degree heterogeneity relative to
sparsity

Why?

First term satisfies

θ
(l)
min

∥θ(l)∥2
≤ ∥θ(l)∥33

∥θ(l)∥2
≤ θ

(l)
max

∥θ(l)∥2
,

and is tightest when θ
(l)
max = θ

(l)
min.

Second term satisfies

1

n
≤ θ

(l)
max

∥θ(l)∥2
≤ 1

n

(
θ
(l)
max

θ
(l)
min

)

and is tightest when θ
(l)
max = θ

(l)
min.
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Misclassification Error Rate

Loss Function

Define:

ℓ(ẑ, z) : = min
Permutations P

1

n

n∑
i=1

I{ẑ(i) ̸= P(z(i))}.

Provide bounds on expected error rate in terms of

K and L;

Degree heterogeneity;

Community separation;

Relationship between degree heterogeneity and community
separation
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Main Result

Theorem (Agterberg et al. (2022))

Suppose certain individual network signal-strength conditions hold.
Let ẑ denote the output of K-Means with DC-MASE. Define

err(i)ave : =
1

L

∑
l

∥θ(l)∥33
θ
(l)
i ∥θ(l)∥4(λ(l)

min)
2
;

(
Average Degree Heterogeneity

and Community Separation

)

err(i)max : = max
l

θ
(l)
max

θ
(l)
i ∥θ(l)∥2λ(l)

min

.
(

Worst-Case Degree Heterogeneity
and Community Separation

)

Then

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cLmin

{
λ̄2

K2err
(i)
ave

,
λ̄

Kerr
(i)
max

})
+O(n−10).
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Network Homogeneity

Corollary (Agterberg et al. (2022))

Suppose that λ(l)
min = λmin and θ

(l)
i = θi for all l. Then

Eℓ(ẑ, z) ≤ 2K

n

n∑
i=1

exp

(
− cLθi min

{
∥θ∥4λ4

min

K2∥θ∥33
,
∥θ∥2λ2

min

Kθmax

})
+O(n−10).

Key Takeaway

More networks (bigger L) means better misclustering error!



Motivation Our Procedure Theoretical Results Numerical Results Conclusion References

Network Homogeneity

Corollary (Agterberg et al. (2022))

Suppose that λ(l)
min = λmin and θ

(l)
i = θi for all l. Then
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Comparison to One Network

Error rate in Jin et al. (2021) shows that for small K,

Eℓ(ẑ, z) ≲
1

n

n∑
i=1

exp

(
− cθi min

{
∥θ∥4λ2

min

∥θ∥33
,
∥θ∥2λmin

θmax

})
.

Our rate:

Eℓ(ẑ, z) ≲
1

n

n∑
i=1

exp

(
− cLθi min

{
∥θ∥4λ4

min

∥θ∥33
,
∥θ∥2λ2

min

θmax

})
.

Key Takeaway

More networks (bigger L) means better misclustering error!
And well-separated communities (larger λmin) means better
misclustering error.
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Eℓ(ẑ, z) ≲
1

n

n∑
i=1

exp

(
− cθi min

{
∥θ∥4λ2

min

∥θ∥33
,
∥θ∥2λmin

θmax

})
.

Our rate:
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Theory: Sparse Networks

Corollary (Agterberg et al. (2022))

Suppose that θi ≍
√
ρn for all i and l. Then

Eℓ(ẑ, z) ≤ 2K exp

(
− cLλ4

minnρn

)
+O(n−10).

Key Takeaway

More networks (bigger L) means better misclustering er-
ror! And well-separated communities (larger λmin) means
better misclustering error even when each network is
quite sparse (e.g. nρn ≍ log(n)).
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