Our Procedure

Theoretical Results

Numerical Results

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

References

Joint Spectral Clustering in Multilayer Degree-Corrected Stochastic Blockmodels

Joshua Agterberg

February, 2023

Funding partially provided by Acheson J. Duncan Advancement of Research in Statistics Fund, MINDS Fellowship, and Counselman Fellowship

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Joint Work With:

Zachary Lubberts (JHU)

Jesús Arroyo (Texas A&M)

・ロト・四ト・ヨト・ヨー うへぐ

Motivation 00000	Our Procedure	Theoretical Results	Numerical Results	Conclusion	References
Outline)				

Motivation •0000	Our Procedure	Theoretical Results	Numerical Results	Conclusion	References
Outline					

- 2 Our Procedure
- 3 Theoretical Results
- 4 Numerical Results

Our Procedure

Theoretical Results

Numerical Results

onclusion

・ロト ・ 四ト ・ ヨト ・ ヨト

References

Multilayer Networks

Setting

Observe *L* networks on same *n* vertices

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Stochastic Blockmodels

(a) Population Adjacency Matrix (b) Observed Adjacency Matrix

・ロ・・聞・・ヨ・・ヨ・ シック・

Theoretical Results

Numerical Results

onclusion

References

Multilayer Networks

Multilayer SBM (e.g. (Lei and Lin, 2022; Lei et al., 2020)) incorporates network-level idiosyncracies:

Theoretical Results

Numerical Results

onclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

Multilayer Networks

Multilayer SBM (e.g. (Lei and Lin, 2022; Lei et al., 2020)) incorporates network-level idiosyncracies:

Other examples:

- Mixture of multilayer SBMs (Jing et al., 2021; Fan et al., 2021)
- DIMPLE model (Pensky and Wang, 2021; Noroozi and Pensky, 2022)
- COSIE model (Arroyo et al., 2021)
- More... (Young et al., 2022; Jones and Rubin-Delanchy, 2020)

Theoretical Results

Numerical Results

onclusion

References

Multilayer Networks

Multilayer SBM (e.g. (Lei and Lin, 2022; Lei et al., 2020)) incorporates network-level idiosyncracies:

Other examples:

- Mixture of multilayer SBMs (Jing et al., 2021; Fan et al., 2021)
- DIMPLE model (Pensky and Wang, 2021; Noroozi and Pensky, 2022)
- COSIE model (Arroyo et al., 2021)
- More... (Young et al., 2022; Jones and Rubin-Delanchy, 2020)

Problem

Vertices act similarly between networks!

Our Procedure

Theoretical Results

Numerical Results

onclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References

Multilayer DCSBM

Solution

Introduce network-specific degree corrections

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Multilayer DCSBM

Solution

Introduce network-specific degree corrections

the second se		
the second se		
the second se	 	_
the second se		
and the second statements and the second	 	
the second se		
		_
the second second second second second second		

・ロト・四ト・ヨト・ヨー もくの

Our Procedure

Theoretical Results

Numerical Results

Conclusion

References

Multilayer DCSBM

Solution

Introduce network-specific degree corrections

the second second second		
transferrer and the second second second		
transferrer and an exception of the	the second second second	ALCOHOL: NO DESCRIPTION
total and the second a sec		
and the second second second		
the second se	the second second second	
THE R. P. LEWIS CO., LANSING MICH.	THE OWNER OF TAXABLE PARTY.	
the second se		

Maintains:

Global community structure

Network-level idiosyncrasies

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Multilayer DCSBM

Solution

Introduce network-specific degree corrections

the second s		
		_
the second se		_
the second se	and the second second	
		_
stand and the second of the second state of th		_
		_
		_

Maintains:

Global community structure

Network-level idiosyncrasies

Vertex-level idiosyncrasies

Inference Task

Recover communities!

3 Theoretical Results

4 Numerical Results

5 Conclusion

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Theoretical Results

Numerical Results

Conclusion

References

Spectral Geometry

Observation 1

Each population network is rank K, with rows of scaled eigenvectors supported on one of K rays, where K is the number of communities.

Population adjacency matrix

Rows of scaled eigenvectors of population adjacency matrix, viewed as points in dimension K = 3

Theoretical Results

Numerical Results

onclusion

References

Spectral Geometry

Observation 2

Projecting each ray to the sphere results in community memberships for a single network.

Rows of scaled eigenvectors of population adjacency matrix, viewed as points in dimension K=3

Row-normalized scaled eigenvectors of population adjacency matrix, viewed as points in dimension K=3

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theoretical Results

Numerical Results

Conclusion

References

Spectral Geometry

Observation 3

 $n \times LK$ matrix of concatenated row-normalized embedding has left singular subspace that reveals community memberships for all networks.

Rows of left singular vectors viewed as points in dimension K = 3

DC-MASE: Degree-Corrected Multiple Adjacency Spectral Embedding

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Numerical Results

onclusion

References

DC-MASE: Degree-Corrected Multiple Adjacency Spectral Embedding

 $n \times LK$ matrix of concatenated row-normalized embedding of each observed adjacency matrix.

Rows of left singular vectors of the matrix on the left, viewed as points in dimension K=3

・ コット (雪) (小田) (コット 日)

イロト 不得 トイヨト イヨト

Outline

4 Numerical Results

5 Conclusion

Theoretical Results

Numerical Results

onclusion

References

Theoretical Guarantees

Theorem (Informal Restatement of Theorem 1 of Agterberg et al. (2022))

Consider a multilayer DCSBM with each network having **the same signal strength**, and suppose each edge probability matrix has rank *K* and that each node has degree correction parameter θ_i . Let \hat{z} denote the output of clustering with *K*-means on the rows of the output of DC-MASE, and define

$$\ell(\widehat{z},z) := \frac{\# \textit{misclustered nodes}}{n}$$

Then

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\left(-c\boldsymbol{L}\boldsymbol{\theta}_{i} \times (\text{SNR-like term})\right).$$

Note: the same signal strength condition is not required in the main result. $\langle \Box \rangle \langle \exists \rangle \langle \exists \rangle \langle \exists \rangle \langle \exists \rangle \rangle \langle \exists \rangle \rangle$

and the second second

Improving Estimation?

 Has been demonstrated that vanilla spectral clustering (using a slightly different procedure) achieves the error rate:

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\bigg(-c\theta_i \times \big(\text{SNR-like term}\big)\bigg).$$

In contrast, our results show that

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\bigg(-c\boldsymbol{L}\boldsymbol{\theta}_{i} \times \big(\text{SNR-like term}\big)\bigg).$$

Improving Estimation?

 Has been demonstrated that vanilla spectral clustering (using a slightly different procedure) achieves the error rate:

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\bigg(-c\theta_i \times \big(\text{SNR-like term}\big)\bigg).$$

In contrast, our results show that

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\bigg(-c\boldsymbol{L}\boldsymbol{\theta}_{i} \times \big(\mathrm{SNR}\text{-like term}\big)\bigg).$$

Key Takeaway

Multiple networks *improve* estimation guarantees (relative to the single network setting).

Motivation 00000	Our Procedure	Theoretical Results	Numerical Results	Conclusion	References
Outline)				

3 Theoretical Results

4 Numerical Results

5 Conclusion

・ロト・日本・日本・日本・日本・日本

Figure: Performance of DC-MASE on networks with severe degree heterogeneity between networks. In each community, half of the degree corrections are one value, and half of the degrees are another value, and these switch between networks.

Our Procedure

Theoretical Results

Numerical Results

onclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

References

Flight Network Data

Figure: Network of flights- each network is a month of flights between airports

Motivation Our Procedure

Theoretical Results

Numerical Results

Conclusion

References

Tracking Flights

Figure: Average flights in each community over time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Theoretical Results

Numerical Results

onclusion

References

Tracking Degree-Corrections

Figure: Estimated degree-corrections within each community over time

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theoretical Results

Numerical Results 00000

・ロット (雪) (日) (日)

3

References

Tracking Degree-Corrections

Figure: Estimated Degree-Corrections for some airports in the first community over time

Motivation 00000	Our Procedure	Theoretical Results	Numerical Results	Conclusion ••	References
Outline					

- 2 Our Procedure
- 3 Theoretical Results
- 4 Numerical Results

- The Multilayer DCSBM model allows for:
 - Global community structure
 - Layer heterogeneity in the connection probabilities between clusters

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Vertex heterogeneity within and between networks

- The Multilayer DCSBM model allows for:
 - Global community structure
 - Layer heterogeneity in the connection probabilities between clusters

- · Vertex heterogeneity within and between networks
- DC-MASE accounts for vertex and layer heterogeneity but still benefits from multiple observations and shared community structure

- The Multilayer DCSBM model allows for:
 - Global community structure
 - Layer heterogeneity in the connection probabilities between clusters

- · Vertex heterogeneity within and between networks
- DC-MASE accounts for vertex and layer heterogeneity but still benefits from multiple observations and shared community structure

- Joshua Agterberg, Zachary Lubberts, and Jesús Arroyo. Joint Spectral Clustering in Multilayer Degree-Corrected Stochastic Blockmodels, December 2022. arXiv:2212.05053 [math, stat].
- Jesús Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E. Priebe, and Joshua T. Vogelstein. Inference for Multiple Heterogeneous Networks with a Common Invariant Subspace. *Journal of Machine Learning Research*, 22(142): 1–49, 2021. ISSN 1533-7928.
- Xing Fan, Marianna Pensky, Feng Yu, and Teng Zhang. ALMA: Alternating Minimization Algorithm for Clustering Mixture Multilayer Network, October 2021. arXiv:2102.10226 [cs, math, stat].

- Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Improvements on SCORE, Especially for Weak Signals. *Sankhya A*, March 2021. ISSN 0976-836X, 0976-8378. doi: 10.1007/s13171-020-00240-1.
- Bing-Yi Jing, Ting Li, Zhongyuan Lyu, and Dong Xia.
 Community detection on mixture multilayer networks via regularized tensor decomposition. *The Annals of Statistics*, 49(6):3181–3205, December 2021. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2079.
- Andrew Jones and Patrick Rubin-Delanchy. The multilayer random dot product graph. *arXiv:2007.10455 [cs, stat]*, July 2020.

- Jing Lei and Kevin Z. Lin. Bias-Adjusted Spectral Clustering in Multi-Layer Stochastic Block Models. *Journal of the American Statistical Association*, 0(0):1–13, March 2022. ISSN 0162-1459. doi: 10.1080/01621459.2022.2054817.
- Jing Lei, Kehui Chen, and Brian Lynch. Consistent community detection in multi-layer network data. *Biometrika*, 107(1): 61–73, March 2020. ISSN 0006-3444. doi: 10.1093/biomet/asz068.
- Majid Noroozi and Marianna Pensky. Sparse Subspace Clustering in Diverse Multiplex Network Model, June 2022. arXiv:2206.07602 [cs, stat].
- Marianna Pensky and Yaxuan Wang. Clustering of Diverse Multiplex Networks. arXiv:2110.05308 [stat], October 2021.

Jean-Gabriel Young, Alec Kirkley, and M. E. J. Newman. Clustering of heterogeneous populations of networks. *Physical Review E*, 105(1):014312, January 2022. doi: 10.1103/PhysRevE.105.014312.

Our Procedure

Theoretical Results

Numerical Results

onclusion

ヘロト 人間 とくほとくほとう

References • 00000000

€ 990

Thank you!

𝖅: @JAgterberger

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Formally:

• Observe *L* (symmetric) adjacency matrices $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(L)} \in \{0, 1\}^{n \times n}$ on same *n* vertices

Formally:

- Observe *L* (symmetric) adjacency matrices $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(L)} \in \{0, 1\}^{n \times n}$ on same *n* vertices
- Each vertex belongs to one of K communities; set z : [n] → [K] as the assignment vector

Formally:

- Observe *L* (symmetric) adjacency matrices $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(L)} \in \{0, 1\}^{n \times n}$ on same *n* vertices
- Each vertex belongs to one of K communities; set $z : [n] \rightarrow [K]$ as the assignment vector
- Upper triangles of each adjacency matrix satisfy

$$\mathbf{A}_{ij}^{(l)} \sim \operatorname{Bernoulli}(\theta_i^{(l)} \theta_j^{(l)} \mathbf{B}_{z(i), z(j)}^{(l)})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

independently

Formally:

- Observe *L* (symmetric) adjacency matrices $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(L)} \in \{0, 1\}^{n \times n}$ on same *n* vertices
- Each vertex belongs to one of K communities; set $z : [n] \rightarrow [K]$ as the assignment vector
- Upper triangles of each adjacency matrix satisfy

$$\mathbf{A}_{ij}^{(l)} \sim \text{Bernoulli}(\theta_i^{(l)} \theta_j^{(l)} \mathbf{B}_{z(i), z(j)}^{(l)})$$

independently

Each matrix A^(l) satisfies

$$\mathbb{E}\mathbf{A}^{(l)} = \Theta^{(l)}\mathbf{Z}\mathbf{B}^{(l)}\mathbf{Z}^{\top}\Theta^{(l)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $\mathbf{Z}_{ik} = 1$ if z(i) = k

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Community Separation

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Community Separation

Two important quantities:

 λ^(l)_{min} = absolute value of smallest nonzero eigenvalue of B^(l).

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Our Procedure

Theoretical Results

Numerical Results

onclusion

References

Community Separation

Two important quantities:

 λ^(l)_{min} = absolute value of smallest nonzero eigenvalue of B^(l). Example:

$$\mathbf{B}^{(l)} = \begin{pmatrix} 1 & 1-\lambda\\ 1-\lambda & 1 \end{pmatrix}$$

・ロット (雪) ・ (日) ・ (日)

э

Theoretical Results

Numerical Results

onclusion

References

Community Separation

Two important quantities:

 λ^(l)_{min} = absolute value of smallest nonzero eigenvalue of B^(l). Example:

$$\mathbf{B}^{(l)} = \begin{pmatrix} 1 & 1-\lambda \\ 1-\lambda & 1 \end{pmatrix}$$

• Average community separation

$$\bar{\lambda} = rac{1}{L} \sum_{l=1}^{L} \lambda_{\min}.$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References

Degree Heterogeneity

• $\frac{\|\theta^{(l)}\|_3^3}{\|\theta^{(l)}\|^4}$ and $\frac{\theta_{\max}^{(l)}}{\|\theta^{(l)}\|^2}$ measure degree heterogeneity relative to sparsity

- Degree hererogeneity
 - $\frac{\|\theta^{(l)}\|_3^3}{\|\theta^{(l)}\|^4}$ and $\frac{\theta_{\max}^{(l)}}{\|\theta^{(l)}\|^2}$ measure degree heterogeneity relative to sparsity Why?
 - First term satisfies

$$\frac{\theta_{\min}^{(l)}}{\|\theta^{(l)}\|^2} \leq \frac{\|\theta^{(l)}\|_3^3}{\|\theta^{(l)}\|^2} \leq \frac{\theta_{\max}^{(l)}}{\|\theta^{(l)}\|^2},$$

and is tightest when $\theta_{\max}^{(l)} = \theta_{\min}^{(l)}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- $\frac{\|\theta^{(l)}\|_3^3}{\|\theta^{(l)}\|^4}$ and $\frac{\theta_{\max}^{(l)}}{\|\theta^{(l)}\|^2}$ measure degree heterogeneity relative to sparsity Why?
 - First term satisfies

$$\frac{\theta_{\min}^{(l)}}{\|\theta^{(l)}\|^2} \le \frac{\|\theta^{(l)}\|_3^3}{\|\theta^{(l)}\|^2} \le \frac{\theta_{\max}^{(l)}}{\|\theta^{(l)}\|^2},$$

and is tightest when $\theta_{\max}^{(l)} = \theta_{\min}^{(l)}$. • Second term satisfies

$$\frac{1}{n} \leq \frac{\theta_{\max}^{(l)}}{\|\theta^{(l)}\|^2} \leq \frac{1}{n} \bigg(\frac{\theta_{\max}^{(l)}}{\theta_{\min}^{(l)}} \bigg)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and is tightest when $\theta_{\max}^{(l)} = \theta_{\min}^{(l)}$.

Our Procedure

Theoretical Results

Numerical Results

onclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

References

Misclassification Error Rate

Loss Function

Define:

$$\ell(\widehat{z}, z) := \min_{\text{Permutations } \mathcal{P}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{\widehat{z}(i) \neq \mathcal{P}(z(i))\}.$$

ion Our Proce

r Procedure

Theoretical Results

Numerical Results

onclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

Misclassification Error Rate

Loss Function

Define:

$$\ell(\widehat{z},z):=\min_{\text{Permutations }\mathcal{P}}\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\{\widehat{z}(i)\neq\mathcal{P}(z(i))\}.$$

Provide bounds on expected error rate in terms of

- K and L;
- Degree heterogeneity;
- Community separation;
- Relationship between degree heterogeneity and community separation

Theorem (Agterberg et al. (2022))

Suppose certain individual network signal-strength conditions hold. Let \hat{z} denote the output of K-Means with DC-MASE. Define

$$\begin{aligned} &\operatorname{err}_{\operatorname{ave}}^{(i)} := \frac{1}{L} \sum_{l} \frac{\|\theta^{(l)}\|_{3}^{3}}{\theta_{i}^{(l)} \|\theta^{(l)}\|^{4} (\lambda_{\min}^{(l)})^{2}}; \qquad \begin{pmatrix} &\operatorname{Average \ Degree \ Heterogeneity} \\ &\operatorname{and \ Community \ Separation} \end{pmatrix} \\ &\operatorname{err}_{\max}^{(i)} := \max_{l} \frac{\theta_{\max}^{(l)}}{\theta_{i}^{(l)} \|\theta^{(l)}\|^{2} \lambda_{\min}^{(l)}}. \qquad \begin{pmatrix} &\operatorname{Worst-Case \ Degree \ Heterogeneity} \\ &\operatorname{and \ Community \ Separation} \end{pmatrix} \end{aligned}$$

Then

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\left(-c\boldsymbol{L}\min\left\{\frac{\overline{\lambda}^2}{K^2 \mathrm{err}_{\mathrm{ave}}^{(i)}}, \frac{\overline{\lambda}}{K \mathrm{err}_{\mathrm{max}}^{(i)}}\right\}\right) + O(n^{-10}).$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Our Procedure

Theoretical Results

Numerical Results

onclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References

Network Homogeneity

Corollary (Agterberg et al. (2022))

Suppose that $\lambda_{\min}^{(l)} = \lambda_{\min}$ and $\theta_i^{(l)} = \theta_i$ for all *l*. Then

$$\mathbb{E}\ell(\widehat{z},z) \le \frac{2K}{n} \sum_{i=1}^{n} \exp\left(-c\boldsymbol{L}\theta_{i} \min\left\{\frac{\|\boldsymbol{\theta}\|^{4}\lambda_{\min}^{4}}{K^{2}\|\boldsymbol{\theta}\|_{3}^{3}}, \frac{\|\boldsymbol{\theta}\|^{2}\lambda_{\min}^{2}}{K\theta_{\max}}\right\}\right) + O(n^{-10}).$$

Our Procedure

Theoretical Results

Numerical Results

onclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

References

Network Homogeneity

Corollary (Agterberg et al. (2022))

Suppose that $\lambda_{\min}^{(l)} = \lambda_{\min}$ and $\theta_i^{(l)} = \theta_i$ for all *l*. Then

$$\mathbb{E}\ell(\widehat{z},z) \leq \frac{2K}{n} \sum_{i=1}^{n} \exp\left(-c\boldsymbol{L}\theta_{i} \min\left\{\frac{\|\theta\|^{4}\lambda_{\min}^{4}}{K^{2}\|\theta\|_{3}^{3}}, \frac{\|\theta\|^{2}\lambda_{\min}^{2}}{K\theta_{\max}}\right\}\right) + O(n^{-10}).$$

Key Takeaway

More networks (bigger L) means better misclustering error!

Comparison to One Network

Error rate in Jin et al. (2021) shows that for small K,

$$\mathbb{E}\ell(\widehat{z},z) \lesssim \frac{1}{n} \sum_{i=1}^{n} \exp\bigg(-c\theta_i \min\bigg\{\frac{\|\theta\|^4 \lambda_{\min}^2}{\|\theta\|_3^3}, \frac{\|\theta\|^2 \lambda_{\min}}{\theta_{\max}}\bigg\}\bigg).$$

Our rate:

$$\mathbb{E}\ell(\widehat{z},z) \lesssim \frac{1}{n} \sum_{i=1}^{n} \exp\bigg(-c\boldsymbol{L}\theta_{i} \min\bigg\{\frac{\|\boldsymbol{\theta}\|^{4}\lambda_{\min}^{4}}{\|\boldsymbol{\theta}\|_{3}^{3}}, \frac{\|\boldsymbol{\theta}\|^{2}\lambda_{\min}^{2}}{\theta_{\max}}\bigg\}\bigg).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Motivation Our Procedure Theoretical Results Numerical Results Conclusion References

Comparison to One Network

Error rate in Jin et al. (2021) shows that for small K,

$$\mathbb{E}\ell(\widehat{z},z) \lesssim \frac{1}{n} \sum_{i=1}^{n} \exp\bigg(-c\theta_{i} \min\bigg\{\frac{\|\theta\|^{4}\lambda_{\min}^{2}}{\|\theta\|_{3}^{3}}, \frac{\|\theta\|^{2}\lambda_{\min}}{\theta_{\max}}\bigg\}\bigg).$$

Our rate:

$$\mathbb{E}\ell(\widehat{z},z) \lesssim \frac{1}{n} \sum_{i=1}^{n} \exp\bigg(-c\boldsymbol{L}\theta_{i} \min\bigg\{\frac{\|\theta\|^{4}\lambda_{\min}^{4}}{\|\theta\|_{3}^{3}}, \frac{\|\theta\|^{2}\lambda_{\min}^{2}}{\theta_{\max}}\bigg\}\bigg).$$

Key Takeaway

More networks (bigger L) means better misclustering error!

 Motivation
 Our Procedure
 Theoretical Results
 Numerical Results
 Conclusion
 References

 00000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Comparison to One Network

Error rate in Jin et al. (2021) shows that for small K,

$$\mathbb{E}\ell(\widehat{z},z) \lesssim \frac{1}{n} \sum_{i=1}^{n} \exp\bigg(-c\theta_i \min\bigg\{ \frac{\|\theta\|^4 \lambda_{\min}^2}{\|\theta\|_3^3}, \frac{\|\theta\|^2 \lambda_{\min}}{\theta_{\max}} \bigg\} \bigg).$$

Our rate:

$$\mathbb{E}\ell(\widehat{z},z) \lesssim \frac{1}{n} \sum_{i=1}^{n} \exp\bigg(-c\boldsymbol{L}\theta_{i} \min\bigg\{\frac{\|\theta\|^{4}\lambda_{\min}^{4}}{\|\theta\|_{3}^{3}}, \frac{\|\theta\|^{2}\lambda_{\min}^{2}}{\theta_{\max}}\bigg\}\bigg).$$

Key Takeaway

More networks (bigger *L*) means better misclustering error! And well-separated communities (larger λ_{\min}) means better misclustering error.

Theoretical Results

Numerical Results

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References

Theory: Sparse Networks

Corollary (Agterberg et al. (2022))

Suppose that $\theta_i \asymp \sqrt{\rho_n}$ for all i and l. Then

$$\mathbb{E}\ell(\widehat{z},z) \le 2K \exp\left(-cL\lambda_{\min}^4 n\rho_n\right) + O(n^{-10}).$$

Theoretical Results

Numerical Results

Conclusion

References

Theory: Sparse Networks

Corollary (Agterberg et al. (2022))

Suppose that $\theta_i \asymp \sqrt{\rho_n}$ for all *i* and *l*. Then

$$\mathbb{E}\ell(\widehat{z},z) \le 2K \exp\left(-cL\lambda_{\min}^4 n\rho_n\right) + O(n^{-10}).$$

Key Takeaway

More networks (bigger *L*) means better misclustering error! And well-separated communities (larger λ_{\min}) means better misclustering error

Theoretical Results

Numerical Results

Conclusion

References

Theory: Sparse Networks

Corollary (Agterberg et al. (2022))

Suppose that $\theta_i \asymp \sqrt{\rho_n}$ for all *i* and *l*. Then

$$\mathbb{E}\ell(\widehat{z},z) \le 2K \exp\left(-cL\lambda_{\min}^4 n\rho_n\right) + O(n^{-10}).$$

Key Takeaway

More networks (bigger *L*) means better misclustering error! And well-separated communities (larger λ_{\min}) means better misclustering error *even when each network is quite sparse (e.g.* $n\rho_n \simeq \log(n)$).