Statistics Review

Joshua Agterberg

Johns Hopkins University

Zoom

Outline

(1) Preliminaries
(2) Exact Parametric Methods
(3) Large-Sample Parametric Methods
4. Linear Regression
(5) Machine Learning

6 Nonparametric and High-Dimensional Statistics

Figure: Source:
https://sarahmarley.com/2015/07/30/why-statistics-is-not-just-maths/

Notes

Notes available at my website

Outline

(1) Preliminaries

- Samples and Population
- Main Ideas

Samples and Population

- We have a population distribution f_{0} and a model $\mathcal{F}=\{f: f \in \mathcal{F}\}$
- Goal: extract some information about f_{0} from \mathcal{F}.
- Examples:
- Population follows a $N\left(\mu_{0}, \sigma_{0}^{2}\right)$ distribution, and from the set
- Population exhibits some probability p_{0} of having an attribute (e.g. having COVID-19), and consider $\mathcal{F}=\operatorname{Binomial}(n, p), p>0$.
- Population follows some continuous distribution f_{0} and we set $\mathcal{F}=\{$ all continuous distributions $\}$.

Samples and Population

- We have a population distribution f_{0} and a model $\mathcal{F}=\{f: f \in \mathcal{F}\}$
- Goal: extract some information about f_{0} from \mathcal{F}.
- Examples:
- Population follows a $N\left(\mu_{0}, \sigma_{0}^{2}\right)$ distribution, and from the set
- Population exhibits some probability p_{0} of having an attribute (e.g. having COVID-19), and consider $\mathcal{F}=\operatorname{Binomial}(n, p), p>0$.
- Population follows some continuous distribution f_{0} and we set $\mathcal{F}=\{$ all continuous distributions $\}$

Samples and Population

- We have a population distribution f_{0} and a model $\mathcal{F}=\{f: f \in \mathcal{F}\}$
- Goal: extract some information about f_{0} from \mathcal{F}.
- Examples:
- Population follows a $N\left(\mu_{0}, \sigma_{0}^{2}\right)$ distribution, and from the set $\mathcal{F}:=\left\{N\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma^{2}>0\right\}$
- Population exhibits some probability p_{0} of having an attribute (e.g. having COVID-19), and consider $\mathcal{F}=$ Binomial $(n, p), p>0$.
- Population follows some continuous distribution f_{0} and we set $\mathcal{F}=\{$ all continuous distributions $\}$.

Parametric Families

- If the family satisfies $\mathcal{F}:=\left\{f_{\theta}: \theta \in \mathbb{R}^{d}\right\}$, then we say it is parametric
- Examples of parametric families:
- Bernoulli: $X \sim \operatorname{Ber}(p), P(X=1)=p$
- Binomial: $X \sim \operatorname{Bin}(n, p), P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$, $\operatorname{Bin}(n, p)=\sum_{i=1}^{n} \operatorname{Ber}(p)$
- Normal: $X \sim N\left(\mu, \sigma^{2}\right), f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
$\operatorname{Bin}(n, p) \approx N(n p, n p a), \frac{N\left(\mu, \sigma^{2}\right)-\mu}{\sigma}=N(0.1)$
- Chi-square: $X \sim \chi_{\nu}^{2}, \chi_{\nu}^{2}=\sum_{i=1}^{\nu} N(0,1)^{2}$
- t-distribution: $X \sim t_{\nu}, t_{\nu}=\frac{N(0,1)}{\sqrt{\chi_{\nu}^{2} / \nu}}, t_{\infty}=N(0,1), t_{0}=$

Cauchy (undefined mean and variance)

- F-distribution $X \sim F_{n, m}, F_{n, m}=\frac{\chi_{n}^{2} / n}{\chi_{m} / m}, t_{\nu}^{2}=F_{1, \nu}$
- Others: Exponential, Poisson, Gamma, Beta, Negative Binomial,

Parametric Families

- If the family satisfies $\mathcal{F}:=\left\{f_{\theta}: \theta \in \mathbb{R}^{d}\right\}$, then we say it is parametric
- Examples of parametric families:
- Bernoulli: $X \sim \operatorname{Ber}(p), P(X=1)=p$
- Binomial: $X \sim \operatorname{Bin}(n, p), P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$, $\operatorname{Bin}(n, p)=\sum_{i=1}^{n} \operatorname{Ber}(p)$
- Normal: $X \sim N\left(\mu, \sigma^{2}\right), f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
$\operatorname{Bin}(n, p) \approx N(n p, n p q), \frac{N\left(\mu, \sigma^{2}\right)-\mu}{\sigma}=N(0,1)$
- Chi-square: $X \sim \chi_{\nu}^{2}, \chi_{\nu}^{2}=\sum_{i=1}^{\nu} N(0,1)^{2}$
- t-distribution: $X \sim t_{\nu}, t_{\nu}=\frac{N(0,1)}{\sqrt{\chi_{\nu}^{2} / \nu}}, t_{\infty}=N(0,1), t_{0}=$

Cauchy (undefined mean and variance)

- F-distribution $X \sim F_{n, m}, F_{n, m}=\frac{\chi_{n}^{2} / n}{\chi_{m} / m}, t_{\nu}^{2}=F_{1, \nu}$
- Others: Exponential, Poisson, Gamma, Beta, Negative Binomial, ...

Figure: Source:
https://www.facebook.com/statsmemes/photos/a.306077739764526/975685

Nonparametric Families

- If the family \mathcal{F} is infinite-dimensional, we (typically) say it is nonparametric (Tsybakov, 2008)
- Semiparametric out-of-scope (Bickel et al., 1998)
- Examples of nonparametric families
- $\mathcal{F}:=\left\{f: \mathbb{E}_{f}|X|^{2}<\infty\right\}$; i.e. the set of distributions with finite
second moment
- $\mathcal{F}:=\{f: f$ is a continuous density $\}$
- $\mathcal{F}:=\{f: f$ is infinitely differentiable $\}$
- $\mathcal{F}:=\{f: f$ has the property that
(log-concave distributions see Samworth)
- $\mathcal{F}:=\{f: f$ is has continuous derivatives up to order $r\}$

Nonparametric Families

- If the family \mathcal{F} is infinite-dimensional, we (typically) say it is nonparametric (Tsybakov, 2008)
- Semiparametric out-of-scope (Bickel et al., 1998)
- Examples of nonparametric families
- $\mathcal{F}:=\left\{f: \mathbb{E}_{f}|X|^{2}<\infty\right\}$; i.e. the set of distributions with finite second moment
- $\mathcal{F}:=\{f: f$ is a continuous density $\}$
- $\mathcal{F}:=\{f: f$ is infinitely differentiable $\}$
- $\mathcal{F}:=\{f: f$ has the property that
$\log f(t x+(1-t) y) \geq t \log f(x)+(1-t) \log f(y)$
(log-concave distributions see Samworth)
- $\mathcal{F}:=\{f: f$ is has continuous derivatives up to order $r\}$

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (
- Often much easier to study asymptotic results than finite-sample results (

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise we study asymptotics (
- Often much easier to study asymptotic results than finite-sample results (

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can nerform inference exactly
- Otherwise, we study asymptotics (
- Often much easier to study asymntotic results than finite-sample results (

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics
- Often much easier to study asymptotic results than finite-sample results (

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (
- Often much easier to study asymptotic results than finite-sample results (

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (

Main Ideas

- We observe a sample X_{1}, \ldots, X_{n} iid from f_{0}.
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
- estimate θ,
- perform a hypothesis test,
- or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

A note on prerequisites

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric seltings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

A note on prerequisites

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

A note on prerequisites

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper
undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

A note on prerequisites

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

A note on prerequisites

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

Outline

(2) Exact Parametric Methods

- Estimation
- One-Sample Testing
- Two-Sample Testing

Exact Parametric Methods

In some cases, if we assume the population has a distribution, we can explicitly characterize the finite-sample distribution

Figure: Source: https://www.pinterest.com/pin/246853623302262497/

Estimation

- Data: $X_{i} \sim N\left(\mu, \sigma^{2}\right)$
- Estimator: $\hat{\mu}=\bar{X}$
- Distribution: $\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t_{n-1}$ ("proof": $\frac{\bar{X}-\mu}{s / \sqrt{n}}=\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{s^{2} / \sigma^{2}}}$)
- C.I.: $\bar{X} \pm t_{n-1}(\alpha / 2) \frac{s}{\sqrt{n}}$

Estimation

- Data: $X_{i} \sim N\left(\mu, \sigma^{2}\right)$
- Estimator: $\hat{\mu}=\bar{X}$
- Distribution: $\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t_{n-1}$ ("proof": $\frac{\bar{X}-\mu}{s / \sqrt{n}}=\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{s^{2} / \sigma^{2}}}$)
- C.I.: $\bar{X} \pm t_{n-1}(\alpha / 2) \frac{s}{\sqrt{n}}$

We know the exact distribution when $X_{i} \sim N\left(\mu, \sigma^{2}\right)$.

One-Sample Testing

- If $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, we want to test whether the mean is equal to μ_{0}
- Form the hypotheses

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{A}: \mu \neq \mu_{0}
\end{aligned}
$$

- Under the null $\mu=\mu_{0}$, the data $X_{i} \sim N\left(\mu_{0}, \sigma^{2}\right)$
- Form the test statistic $T=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T|>t_{n-1}(\alpha / 2)$

One-Sample Testing

- If $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, we want to test whether the mean is equal to μ_{0}
- Form the hypotheses

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{A}: \mu \neq \mu_{0}
\end{aligned}
$$

- Under the null $\mu=\mu_{0}$, the data $X_{i} \sim N\left(\mu_{0}, \sigma^{2}\right)$
- Form the test statistic $T=\frac{X-\mu_{0}}{s / \sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T|>t_{n-1}(\alpha / 2)$

One-Sample Testing

- If $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, we want to test whether the mean is equal to μ_{0}
- Form the hypotheses

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{A}: \mu \neq \mu_{0}
\end{aligned}
$$

- Under the null $\mu=\mu_{0}$, the data $X_{i} \sim N\left(\mu_{0}, \sigma^{2}\right)$
- Form the test statistic $T=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T|>t_{n-1}(\alpha / 2)$

One-Sample Testing

- If $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, we want to test whether the mean is equal to μ_{0}
- Form the hypotheses

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{A}: \mu \neq \mu_{0}
\end{aligned}
$$

- Under the null $\mu=\mu_{0}$, the data $X_{i} \sim N\left(\mu_{0}, \sigma^{2}\right)$
- Form the test statistic $T=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T|>t_{n-1}(\alpha / 2)$

Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/

Two-Sample Testing

- $X_{i} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- Want to test $\mu_{X}=\mu_{Y}$
- Form the hypothesis:

- Test statistic: $T=\frac{\bar{X}-\bar{Y}}{\sqrt{s_{D}^{2} s_{D}^{2}}} \sim t_{n-1}$, where

- Rejection region: $|T|>t_{n-1}(\alpha / 2)$

Two-Sample Testing

- $X_{i} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- Want to test $\mu_{X}=\mu_{Y}$
- Form the hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X} \neq \mu_{Y}
\end{aligned}
$$

- Rejection region: $|T|>t_{n-1}(\alpha / 2)$

Two-Sample Testing

- $X_{i} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- Want to test $\mu_{X}=\mu_{Y}$
- Form the hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X} \neq \mu_{Y}
\end{aligned}
$$

- Test statistic: $T=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{s_{\rho}^{2}}{n}+\frac{s_{D}^{2}}{m}}} \sim t_{n-1}$, where

$$
s_{p}^{2}:=\frac{(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}}{n+m-2}
$$

- Rejection region: $|T|>t_{n-1}(\alpha / 2)$

Two-Sample Testing

- $X_{i} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- Want to test $\mu_{X}=\mu_{Y}$
- Form the hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{X}=\mu_{Y} \\
& H_{A}: \mu_{X} \neq \mu_{Y}
\end{aligned}
$$

- Test statistic: $T=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{s_{\rho}^{2}}{n}+\frac{s_{D}^{2}}{m}}} \sim t_{n-1}$, where

$$
s_{p}^{2}:=\frac{(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}}{n+m-2}
$$

- Rejection region: $|T|>t_{n-1}(\alpha / 2)$

Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/

Main Ideas

- Know exact distribution of data
- Calculate its exact distribution under the null H_{0} (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^{2}, multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Main Ideas

- Know exact distribution of data
- Calculate its exact distribution under the null H_{0} (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^{2}, multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Main Ideas

- Know exact distribution of data
- Calculate its exact distribution under the null H_{0} (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^{2}, multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Main Ideas

- Know exact distribution of data
- Calculate its exact distribution under the null H_{0} (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^{2}, multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Main Ideas

- Know exact distribution of data
- Calculate its exact distribution under the null H_{0} (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^{2}, multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Two-Sided One-Sample T-Test
(t-dist. with df $=99, \mathbf{t}=2.8632, p=0.005$, alpha $=0.05$)

Figure: Source:
https://stats.stackexchange.com/questions/220434/hypothesis-testing-why-center-the-sampling-distribution-on-h0

Outline

(3) Large-Sample Parametric Methods

- Central Limit Theorem
- Estimation and Testing for Proportions
- Estimation and Testing for More General Parametric Families

Large-Sample Concepts

- In many cases, we do not know exact distribution of the data
- Nevertheless, with enough samples, we can use the asymptotic results from probability theory, namely the Central Limit Theorem

Large-Sample Concepts

- In many cases, we do not know exact distribution of the data
- Nevertheless, with enough samples, we can use the asymptotic results from probability theory, namely the Central Limit Theorem

Central Limit Theorem

- $X_{1}, \ldots, X_{n} \sim F$ iid
- Define

$$
S_{n}:=\sum_{i=1}^{n} x_{i}
$$

- Then as $n \rightarrow \infty$, we have that

- Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Central Limit Theorem

- $X_{1}, \ldots, X_{n} \sim F$ iid
- Define

$$
S_{n}:=\sum_{i=1}^{n} x_{i}
$$

- Then as $n \rightarrow \infty$, we have that

$$
\frac{S_{n}-n \mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)
$$

- Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Central Limit Theorem

- $X_{1}, \ldots, X_{n} \sim F$ iid
- Define

$$
S_{n}:=\sum_{i=1}^{n} x_{i}
$$

- Then as $n \rightarrow \infty$, we have that

$$
\frac{S_{n}-n \mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)
$$

- Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

$$
n=1
$$

$$
n=20
$$

Figure: Source: http://www.marketexpress.in/2016/11/central-limit-theorem-normal-distribution.html

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size n the distribution is $\operatorname{Binom}(n, p)$, where $p=\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}$ (person i has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
- $H_{0}: \mathbb{P}($ d ug X works $)=.8$
- Observation: for large n, by CLT

where $S_{n}=\sum_{i=1}^{n} X_{i}$.

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size n the distribution is $\operatorname{Binom}(n, p)$, where $p=\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}$ (person i has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
- $H_{0}: \mathbb{P}($ drug X works $)=.8$
- Observation: for large n, by CLT

where $S_{n}=\sum_{i=1}^{n} X_{i}$.

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size n the distribution is $\operatorname{Binom}(n, p)$, where $p=\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}$ (person i has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
- $H_{0}: \mathbb{P}$ (drug X works $)=.8$
- Observation: for large n, by CLT

$$
\frac{S_{n}-n p}{\sigma / \sqrt{n}} \approx N(0,1)
$$

where $S_{n}=\sum_{i=1}^{n} X_{i}$.

Binomial vs. Normal PDF ($\mathrm{n}=50, \mathrm{p}=0.8$)

Figure: Source: https://blogs.sas.com/content/iml/2012/03/14/the-normal-approximation-to-the-binomial-distribution-how-the-quantilescompare.html

One-Sample Testing for Proportions using the CLT

- Hypothesis: $H_{0}: p=p_{0}$ vs. $H_{A}: p \neq p_{0}$
- Test statistics: $Z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}} \sim N(0,1)$
- Rejection region: $|Z|>z(\alpha / 2)$

Two-Sample Testing for Proportions using the CLT

- Hypothesis: $H_{0}: p_{X}-p_{Y}=D_{0}$ vs. $H_{A}: p_{X}-p_{Y} \neq D_{0}$
- Test statistics: $Z=\frac{\hat{p}_{X}-\hat{p}_{Y}-D_{0}}{\sqrt{\frac{p_{X}\left(1-p_{X}\right)}{n}+\frac{p_{Y}\left(1-p_{Y}\right)}{m}}} \sim N(0,1)$
- Rejection region: $|Z|>z(\alpha / 2)$

Other Tests

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_{n}-n \mu}{s / \sqrt{n}}$, then it is approximately $N(0,1)$.
- Other distributions that arise from asymptotics:
- ξ^{2} distribution (e.g. $T^{2} \approx N(0,1)^{2} \approx \xi^{2}(1)$
- F is a ratio of ξ^{2}, so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α, and Type II error $=\mathbb{P}\left(\right.$ error if H_{0} is false $)$.

Other Tests

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{s_{n}-n \mu}{s / \sqrt{n}}$, then it is approximately $N(0,1)$.
- Other distributions that arise from asymptotics:
- ξ^{2} distribution (e.g. $T^{2} \approx N(0,1)^{2} \approx \xi^{2}(1)$
- F is a ratio of ξ^{2}, so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α, and Type II error $=\mathbb{P}$ (error if H_{0} is false $)$.

Other Tests

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_{n}-n \mu}{s / \sqrt{n}}$, then it is approximately $N(0,1)$.
- Other distributions that arise from asymptotics:
- ξ^{2} distribution (e.g. $T^{2} \approx N(0,1)^{2} \approx \xi^{2}(1)$
- F is a ratio of ξ^{2}, so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α, and Type II error $=\mathbb{P}\left(\right.$ error if H_{0} is false $)$.

Other Tests

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_{n}-n \mu}{s / \sqrt{n}}$, then it is approximately $N(0,1)$.
- Other distributions that arise from asymptotics:
- ξ^{2} distribution (e.g. $T^{2} \approx N(0,1)^{2} \approx \xi^{2}(1)$
- F is a ratio of ξ^{2}, so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α, and Type II error $=\mathbb{P}$ (error if H_{0} is false).

Other Tests

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_{n}-n \mu}{s / \sqrt{n}}$, then it is approximately $N(0,1)$.
- Other distributions that arise from asymptotics:
- ξ^{2} distribution (e.g. $T^{2} \approx N(0,1)^{2} \approx \xi^{2}(1)$
- F is a ratio of ξ^{2}, so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α, and Type II error $=\mathbb{P}$ (error if H_{0} is false),

Other Tests

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_{n}-n \mu}{s / \sqrt{n}}$, then it is approximately $N(0,1)$.
- Other distributions that arise from asymptotics:
- ξ^{2} distribution (e.g. $T^{2} \approx N(0,1)^{2} \approx \xi^{2}(1)$
- F is a ratio of ξ^{2}, so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α, and Type II error $=\mathbb{P}\left(\right.$ error if H_{0} is false $)$.

Consistency

- Suppose X_{1}, \ldots, X_{n} are iid f_{θ}, for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_{n} \rightarrow \theta$ in probability, where this means


```
for all }\varepsilon>0\mathrm{ .
```


Consistency

- Suppose X_{1}, \ldots, X_{n} are iid f_{θ}, for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_{n} \rightarrow \theta$ in probability, where this means

for all $\varepsilon>0$.

Consistency

- Suppose X_{1}, \ldots, X_{n} are iid f_{θ}, for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_{n} \rightarrow \theta$ in probability, where this means

$$
\lim _{n \rightarrow \infty} \mathbb{P}(|\hat{\theta}-\theta|>\varepsilon)=0
$$

for all $\varepsilon>0$.

Figure：Source：https：／／www．facebook．com／StatisticalMemes／

Consistency Example

Example: $X_{1}, \ldots, X_{n} \sim U(0, \theta), \theta>0$.
Set $\hat{\theta}:=\max _{1 \leq i \leq n} X_{i}$. Then

$$
\begin{align*}
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) & =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+\mathbb{P}(\hat{\theta}-\theta>\varepsilon) \tag{1}\\
& =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+0 \tag{2}\\
& =\mathbb{P}(\theta-\varepsilon>\hat{\theta})=\mathbb{P}\left(\max _{1 \leq i \leq n} X_{i}<\theta-\varepsilon\right) \\
& =\mathbb{P}\left(X_{1}<\theta-\varepsilon, \ldots, X_{n}<\theta-\varepsilon\right) \\
& =\left(\mathbb{P}\left(X_{1}<\theta-\varepsilon\right)\right)^{n}=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}
\end{align*}
$$

Where (3) is since $\hat{\theta}<\theta$ always, and by definition, (4) is because $\max X_{i}<c$ if and only if all $X_{i}<c$, (5) is because the X_{i} 's are iid and the CDF of the uniform distribution.

Consistency Example

Example: $X_{1}, \ldots, X_{n} \sim U(0, \theta), \theta>0$.
Set $\hat{\theta}:=\max _{1 \leq i \leq n} X_{i}$. Then

$$
\begin{align*}
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) & =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+\mathbb{P}(\hat{\theta}-\theta>\varepsilon) \tag{1}\\
& =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+0 \tag{2}\\
& =\mathbb{P}(\theta-\varepsilon>\hat{\theta})=\mathbb{P}\left(\max _{1 \leq i \leq n} X_{i}<\theta-\varepsilon\right) \tag{3}\\
& =\mathbb{P}\left(X_{1}<\theta-\varepsilon, \ldots, X_{n}<\theta-\varepsilon\right) \tag{4}\\
& =\left(\mathbb{P}\left(X_{1}<\theta-\varepsilon\right)\right)^{n}=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n} \tag{5}
\end{align*}
$$

Where (3) is since $\hat{\theta}<\theta$ always, and by definition,

Consistency Example

Example: $X_{1}, \ldots, X_{n} \sim U(0, \theta), \theta>0$.
Set $\hat{\theta}:=\max _{1 \leq i \leq n} X_{i}$. Then

$$
\begin{align*}
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) & =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+\mathbb{P}(\hat{\theta}-\theta>\varepsilon) \tag{1}\\
& =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+0 \tag{2}\\
& =\mathbb{P}(\theta-\varepsilon>\hat{\theta})=\mathbb{P}\left(\max _{1 \leq i \leq n} X_{i}<\theta-\varepsilon\right) \tag{3}\\
& =\mathbb{P}\left(X_{1}<\theta-\varepsilon, \ldots, X_{n}<\theta-\varepsilon\right) \tag{4}\\
& =\left(\mathbb{P}\left(X_{1}<\theta-\varepsilon\right)\right)^{n}=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n} \tag{5}
\end{align*}
$$

Where (3) is since $\hat{\theta}<\theta$ always, and by definition, (4) is because $\max X_{i}<c$ if and only if all $X_{i}<c$,

Consistency Example

Example: $X_{1}, \ldots, X_{n} \sim U(0, \theta), \theta>0$.
Set $\hat{\theta}:=\max _{1 \leq i \leq n} X_{i}$. Then

$$
\begin{align*}
\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon) & =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+\mathbb{P}(\hat{\theta}-\theta>\varepsilon) \tag{1}\\
& =\mathbb{P}(\theta-\hat{\theta}>\varepsilon)+0 \tag{2}\\
& =\mathbb{P}(\theta-\varepsilon>\hat{\theta})=\mathbb{P}\left(\max _{1 \leq i \leq n} X_{i}<\theta-\varepsilon\right) \tag{3}\\
& =\mathbb{P}\left(X_{1}<\theta-\varepsilon, \ldots, X_{n}<\theta-\varepsilon\right) \tag{4}\\
& =\left(\mathbb{P}\left(X_{1}<\theta-\varepsilon\right)\right)^{n}=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n} \tag{5}
\end{align*}
$$

Where (3) is since $\hat{\theta}<\theta$ always, and by definition, (4) is because $\max X_{i}<c$ if and only if all $X_{i}<c$, (5) is because the X_{i} 's are iid and the CDF of the uniform distribution.

Consistency Example

- Hence, we see

$$
\mathbb{P}|\hat{\theta}-\theta|>\varepsilon)=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}
$$

which tends to zero for all $\varepsilon>0$ since the term in the parentheses is less than 1.

- So for $X_{1}, \ldots, X_{n} \sim U(0, \theta), \hat{\theta}=\max _{i} X_{i}$ is consistent for θ.
- But

which does not equal θ ! (it is biased)

Consistency Example

- Hence, we see

$$
\mathbb{P}|\hat{\theta}-\theta|>\varepsilon)=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}
$$

which tends to zero for all $\varepsilon>0$ since the term in the parentheses is less than 1.

- So for $X_{1}, \ldots, X_{n} \sim U(0, \theta), \hat{\theta}=\max _{i} X_{i}$ is consistent for θ.
- But

which does not equal θ ! (it is biased)

Consistency Example

- Hence, we see

$$
\mathbb{P}|\hat{\theta}-\theta|>\varepsilon)=\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}
$$

which tends to zero for all $\varepsilon>0$ since the term in the parentheses is less than 1.

- So for $X_{1}, \ldots, X_{n} \sim U(0, \theta), \hat{\theta}=\max _{i} X_{i}$ is consistent for θ.
- But

$$
\mathbb{E}(\hat{\theta})=\frac{n}{n+1} \theta \quad \text { (check!) }
$$

which does not equal θ ! (it is biased)

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta})-\theta$. Say $\hat{\theta}$ is unbiased if bias $=0$
- Define the Mean-Squared Error (MSE):

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta})-\theta$. Say $\hat{\theta}$ is unbiased if bias $=0$
- Define the Mean-Squared Error (MSE):

$=$ Variance $(\hat{\theta})+$ Bias 2

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta})-\theta$. Say $\hat{\theta}$ is unbiased if bias $=0$
- Define the Mean-Squared Error (MSE):

$$
\begin{aligned}
\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right] & =\mathbb{E}\left[(\hat{\theta}-\mathbb{E} \hat{\theta}+\mathbb{E} \hat{\theta}-\theta)^{2}\right] \\
& =\mathbb{E}\left[(\hat{\theta}-\mathbb{E} \hat{\theta})^{2}+(\mathbb{E} \hat{\theta}-\theta)^{2}+2((\hat{\theta}-\mathbb{E} \hat{\theta})(\mathbb{E} \hat{\theta}-\theta))\right] \\
& =\mathbb{E}\left[(\hat{\theta}-\mathbb{E} \hat{\theta})^{2}\right]+(\mathbb{E} \hat{\theta}-\theta)^{2}+2 \mathbb{E}[(\hat{\theta}-\mathbb{E} \hat{\theta})(\mathbb{E} \hat{\theta}-\theta)] \\
& =\mathbb{E}\left[(\hat{\theta}-\mathbb{E} \hat{\theta})^{2}\right]+(\mathbb{E} \hat{\theta}-\theta)^{2} \\
& =\operatorname{Variance}(\hat{\theta})+\operatorname{Bias}^{2}
\end{aligned}
$$

Example Continued

- For $X_{1}, \ldots, X_{n} \sim U(0, \theta)$, we saw $\left.\mathbb{E} \hat{\theta}=\frac{n}{n+1}\right]$, which is biased
- The variance is $\frac{n}{(n+1)^{2}(n+2)} \theta^{2}$ (do this!) - So the MSE is:

Variance $+\operatorname{Bias}^{2}=\frac{n}{(n+1)^{2}(n+2)} \theta^{2}+\left(\frac{1}{n+1}\right)^{2} \theta^{2}$

- Note that as $n \rightarrow \infty$, MSE $\rightarrow 0$.

Example Continued

- For $X_{1}, \ldots, X_{n} \sim U(0, \theta)$, we saw $\left.\mathbb{E} \hat{\theta}=\frac{n}{n+1}\right] \theta$, which is biased
- The variance is $\frac{n}{(n+1)^{2}(n+2)} \theta^{2}$ (do this!)

- So the MSE is:

Variance $+\operatorname{Bias}^{2}=\frac{n}{(n+1)^{2}(n+2)} \theta^{2}+\left(\frac{1}{n+1}\right)^{2} \theta^{2}$

- Note that as $n \rightarrow \infty$, MSE $\rightarrow 0$.

Example Continued

- For $X_{1}, \ldots, X_{n} \sim U(0, \theta)$, we saw $\left.\mathbb{E} \hat{\theta}=\frac{n}{n+1}\right] \theta$, which is biased
- The variance is $\frac{n}{(n+1)^{2}(n+2)} \theta^{2}$ (do this!)
- So the MSE is:

$$
\text { Variance }+\operatorname{Bias}^{2}=\frac{n}{(n+1)^{2}(n+2)} \theta^{2}+\left(\frac{1}{n+1}\right)^{2} \theta^{2}
$$

- Note that as $n \rightarrow \infty$, MSE $\rightarrow 0$.

Example Continued

- For $X_{1}, \ldots, X_{n} \sim U(0, \theta)$, we saw $\left.\mathbb{E} \hat{\theta}=\frac{n}{n+1}\right] \theta$, which is biased
- The variance is $\frac{n}{(n+1)^{2}(n+2)} \theta^{2}$ (do this!)
- So the MSE is:

$$
\text { Variance }+\operatorname{Bias}^{2}=\frac{n}{(n+1)^{2}(n+2)} \theta^{2}+\left(\frac{1}{n+1}\right)^{2} \theta^{2}
$$

- Note that as $n \rightarrow \infty, M S E \rightarrow 0$.

Method of Moments

- The Method of Moments estimates the sample moments via

$$
\hat{\mu}_{k}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} .
$$

- Examples:

- $X \sim U(0, \theta): \mu_{1}=\theta \Rightarrow \hat{\theta}=2 \bar{X}$ (could make no sense)
- Pros: easy, consistent, asymptotically unbiased
- Cons: could make no sense, not efficient

Method of Moments

- The Method of Moments estimates the sample moments via

$$
\hat{\mu}_{k}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}
$$

- Examples:
- $X \sim \operatorname{Poi}(\lambda): \mu_{1}=\lambda \Rightarrow \hat{\mu}_{1}=\bar{X}$ and $\hat{\lambda}=\bar{X}$
- $X \sim N\left(\mu, \sigma^{2}\right): \mu_{1}=\mu, \mu_{2}=\mu^{2}+\sigma^{2} \Rightarrow \hat{\mu}=\bar{X}, \hat{\sigma}^{2}=$ $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ (biased)
- $X \sim \Gamma(\alpha, \beta): \mu_{1}=\alpha / \beta, \mu_{2}=\frac{\alpha(\alpha+1)}{\beta^{2}} \Rightarrow \hat{\beta}=\frac{\hat{\mu}_{1}}{\hat{\mu}_{2}-\hat{\mu}_{1}^{2}}, \alpha=\hat{\beta} \hat{\mu}_{1}$
- $X \sim U(0, \theta): \mu_{1}=\theta \Rightarrow \hat{\theta}=2 \bar{X}$ (could make no sense)
- Pros: easy, consistent, asymptotically unbiased
- Cons: could make no sense, not efficient

Maximum Likelihood

- $\hat{\theta}=\arg \max \operatorname{lik}(\theta)=\arg \max \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$
- $\hat{\theta}=\arg \max I(\theta)=\arg \max \sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)$
- Example: $X \sim \operatorname{Poi}(\lambda): P(X=x)=\frac{\lambda^{x} e^{-1}}{x!}$

Maximum Likelihood

- $\hat{\theta}=\arg \max \operatorname{lik}(\theta)=\arg \max \prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)$
- $\hat{\theta}=\arg \max I(\theta)=\arg \max \sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)$
- Example: $X \sim \operatorname{Poi}(\lambda): P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$

$$
\begin{aligned}
I(\lambda) & =\sum_{i=1}^{n}\left(X_{i} \log \lambda-\lambda-\log X!\right) \\
& =\log \lambda \sum_{i=1}^{n} X_{i}-n \lambda-\sum_{i=1}^{n} \log X! \\
I^{\prime}(\lambda) & =\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}-n=0 \Rightarrow \hat{\lambda}=\bar{X}
\end{aligned}
$$

Properties of the MLE

- Asymptotically unbiased
- Consistent (consistency is the least we can ask for!)
- Efficient, which means that it achieves the Cramer-Rao Lower Bound, or that

$$
\sqrt{n I(\theta)}\left(\hat{\theta}_{M L E}-\theta\right) \rightarrow N(0,1)
$$

and $I(\theta):=E\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]^{2}$ (Fisher information)

Properties of the MLE

- Asymptotically unbiased
- Consistent (consistency is the least we can ask for!)
- Efficient, which means that it achieves the Cramer-Rao Lower Bound, or that

$$
\sqrt{n I(\theta)}\left(\hat{\theta}_{M L E}-\theta\right) \rightarrow N(0,1)
$$

and $I(\theta):=E\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]^{2}$ (Fisher information)

Likelihood Ratio Test

- Hypothesis: $H_{0}: \mu=\mu_{0} ; H_{A}: \mu=\mu_{A}$
- Test statistic: $\Lambda=\frac{f\left(X \mid H_{0}\right)}{f\left(X \mid H_{A}\right)}$ (ratio of likelihoods)
- Rejection region: small value of $\Lambda(X)$
- Most powerful for simple null vs. simple alternative
- Example: $N(\mu, \sigma)$ with σ known
- $H_{0}: \mu=\mu_{0} ; H_{A}: \mu=\mu_{A}$
- $\Lambda=\frac{\exp \left[-\frac{1}{2 \sigma^{2}}\right.}{\exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}\right]}$
- Reject for small $\sum_{i=1}^{n}\left(X_{i}-\mu_{A}\right)^{2}-\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}=2 n \bar{X}\left(\mu_{0}-\mu_{A}\right)+n \mu_{A}^{2}-n \mu_{0}^{2}$.
- If $\mu_{0}>\mu_{A}$, reject for small value of \bar{X}. If $\mu_{0}<\mu_{A}$, reject for large value of \bar{X}

Generalized Ratio Test

- Hypothesis: composite null vs. composite alternative
- Test statistic:

- Rejection region: small value of $\Lambda(X)$ or large value of $-2 \log \Lambda$
- Example:
- $H_{0}: \mu=\mu_{0} ; H_{A}: \mu \neq \mu_{0} \cdot \sigma^{2}$ is known

- Reject when

Generalized Ratio Test

- Hypothesis: composite null vs. composite alternative
- Test statistic:

$$
\Lambda=\frac{\max _{\theta \in H_{0}} f(X \mid \theta)}{\max _{\theta \in H_{0} \cup H_{A}} f(X \mid \theta)} \Rightarrow-2 \log \Lambda \sim \chi_{\operatorname{dim} \Omega-\operatorname{dim} \omega_{0}}^{2} \text { as } n \rightarrow \infty
$$

- Rejection region: small value of $\Lambda(X)$ or large value of $-2 \log \Lambda$
- Example:
- $H_{0}: \mu=\mu_{0} ; H_{A}: \mu \neq \mu_{0} \cdot \sigma^{2}$ is known

- Reject when

Generalized Ratio Test

- Hypothesis: composite null vs. composite alternative
- Test statistic:

$$
\Lambda=\frac{\max _{\theta \in H_{0}} f(X \mid \theta)}{\max _{\theta \in H_{0} \cup H_{A}} f(X \mid \theta)} \Rightarrow-2 \log \Lambda \sim \chi_{\operatorname{dim} \Omega-\operatorname{dim} \omega_{0}}^{2} \text { as } n \rightarrow \infty
$$

- Rejection region: small value of $\Lambda(X)$ or large value of $-2 \log \Lambda$
- Example:
- $H_{0}: \mu=\mu_{0} ; H_{A}: \mu \neq \mu_{0} \cdot \sigma^{2}$ is known

- Reject when

Generalized Ratio Test

- Hypothesis: composite null vs. composite alternative
- Test statistic:

$$
\Lambda=\frac{\max _{\theta \in H_{H}} f(X \mid \theta)}{\max _{\theta \in H_{0} \cup H_{A}} f(X \mid \theta)} \Rightarrow-2 \log \Lambda \sim \chi_{\operatorname{dim} \Omega-\operatorname{dim} \omega_{0}}^{2} \text { as } n \rightarrow \infty
$$

- Rejection region: small value of $\Lambda(X)$ or large value of $-2 \log \wedge$
- Example:
- $H_{0}: \mu=\mu_{0} ; H_{A}: \mu \neq \mu_{0} . \sigma^{2}$ is known
- $\Lambda(X)=\frac{\exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}\right]}{\exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]}$
- Reject when

$$
-2 \log \Lambda>\chi_{1}^{2}(\alpha) \Rightarrow\left(\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right)^{2}>\chi_{1}^{2}(\alpha) \Rightarrow\left|\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right|>z(\alpha / 2)
$$

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation
to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Outline

4. Linear Regression

- Simple Linear Regression
- Multiple Linear Regression
- Variable Selection

WIGHITELDRATIUC.

WHAMOOUIMPLAMEMLLTS

Figure: Source:
https://makeameme.org/meme/when-you-advertise-f81897f53a

What is linear regression?

Figure: Source: https://en.wikipedia.org/wiki/Linear regression/media/File:Linear regression.svg

Model

- Write $\boldsymbol{y}=\beta_{1} \boldsymbol{x}+\beta_{0}+\varepsilon$
- Assume $\varepsilon \sim N\left(0, \sigma^{2}\right)$
- Want to estimate $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$
- Closed form solution under this model:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{S_{x y}}{S_{x x}}, \quad \hat{\beta}_{0}=\bar{y}-b \bar{x}, \\
S_{x y} & =\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right), \quad S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Model

- Write $y=\beta_{1} x+\beta_{0}+\varepsilon$
- Assume $\varepsilon \sim N\left(0, \sigma^{2}\right)$
- Want to estimate $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$
- Closed form solution under this model:

Model

- Write $y=\beta_{1} x+\beta_{0}+\varepsilon$
- Assume $\varepsilon \sim N\left(0, \sigma^{2}\right)$
- Want to estimate $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$
- Closed form solution under this model:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{S_{x y}}{S_{x x}}, \quad \hat{\beta}_{0}=\bar{y}-b \bar{x} \\
S_{x y} & =\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right), \quad S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Hypothesis Testing

Can test whether $\beta_{1}=0$ since we have the exact distributions under this model:

$$
\begin{aligned}
& \frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\sigma^{2} / S_{x x}}} \sim N(0,1), \quad \frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{M S E / S_{x x}}} \sim t_{n-2} \\
& \frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{\sigma^{2} \overline{x^{2}} / S_{x x}}} \sim N(0,1), \quad \frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{M S E \overline{x^{2}} / S_{x x}}} \sim t_{n-2} \\
& \frac{\hat{y}-\left(\beta_{0}+\beta_{1} x^{*}\right)}{\sqrt{M S E\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S_{x x}}\right)}} \sim t_{n-2}
\end{aligned}
$$

Multivariate Setting

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

Multivariate Setting

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.

Multivariate Setting

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

Model

- $Y=\mathbf{X} \beta+\varepsilon$ where

$$
Y \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^{d}
$$

$$
\mathbb{E}(\varepsilon)=0, \mathbb{E}\left(\varepsilon \varepsilon^{\top}\right)=\sigma^{2} I_{d} \quad \text { Gauss-Markov Assumptions }
$$

- By convention, we attach a column of all ones to the matrix X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^{d}$ given the observations \mathbf{X} and the response variables Y

Model

- $Y=\mathbf{X} \beta+\varepsilon$ where

$$
\begin{aligned}
Y & \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^{d} \\
\mathbb{E}(\varepsilon) & =0, \mathbb{E}\left(\varepsilon \varepsilon^{\top}\right)=\sigma^{2} l_{d}
\end{aligned}
$$

Gauss-Markov Assumptions

- By convention, we attach a column of all ones to the matrix X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^{d}$ given the observations \mathbf{X} and the response variables Y

Model

- $Y=\mathbf{X} \beta+\varepsilon$ where

$$
Y \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^{d}
$$

$$
\mathbb{E}(\varepsilon)=0, \mathbb{E}\left(\varepsilon \varepsilon^{\top}\right)=\sigma^{2} I_{d} \quad \text { Gauss-Markov Assumptions }
$$

- By convention, we attach a column of all ones to the matrix \mathbf{X} to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^{d}$ given the observations \mathbf{X} and the response variables Y

Estimator

$$
\begin{aligned}
\underset{\beta \in \mathbb{R}^{d}}{\arg \min }\|\mathbf{X} \beta-Y\|_{2} & =\underset{\beta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{2}\|\mathbf{X} \beta-Y\|_{2}^{2} \\
& =\underset{\beta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{2}\langle\mathbf{X} \beta-Y, \mathbf{X} \beta-Y\rangle \\
& =\underset{\beta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{2}\langle\mathbf{X} \beta, \mathbf{X} \beta\rangle-\langle Y, \mathbf{X} \beta\rangle+\langle Y, Y\rangle \\
& =\underset{\beta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{2}\langle\mathbf{X} \beta, \mathbf{X} \beta\rangle-\langle Y, \mathbf{X} \beta\rangle
\end{aligned}
$$

Estimator

Define $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ via $f(\beta)=\frac{1}{2}\langle\mathbf{X} \beta, \mathbf{X} \beta\rangle-\langle Y, \mathbf{X} \beta\rangle$. We will take the derivative and set it equal to zero.

provided $\mathbf{X}^{\top} \mathbf{X}$ is invertible, which happens as long as there is no collinearity (i.e. no column of \mathbf{X} is a linear combination of other columns)

Estimator

Define $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ via $f(\beta)=\frac{1}{2}\langle\mathbf{X} \beta, \mathbf{X} \beta\rangle-\langle Y, \mathbf{X} \beta\rangle$. We will take the derivative and set it equal to zero.

$$
\begin{aligned}
\nabla f & =\frac{d}{d \beta} \frac{1}{2} \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta-\beta^{\top} \mathbf{X}^{\top} \mathbf{Y} \\
\Longrightarrow \nabla f & =\mathbf{X}^{\top} \mathbf{X} \beta-\mathbf{X}^{\top} Y \\
\Longrightarrow \hat{\beta} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} Y
\end{aligned}
$$

provided $\mathbf{X}^{\top} \mathbf{X}$ is invertible, which happens as long as there is no collinearity (i.e. no column of \mathbf{X} is a linear combination of other columns)

OLS Estimator is BLUE

We have that

$$
\begin{aligned}
\mathbb{E}(\hat{\beta}) & =\mathbb{E}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{Y}\right) \\
& =\mathbb{E}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{X} \beta+\varepsilon)\right) \\
& =\mathbb{E}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \beta+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \varepsilon\right) \\
& \left.=\beta+\mathbb{E}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X} \varepsilon\right) \\
& =\beta
\end{aligned}
$$

so $\hat{\beta}$ is unbiased.

OLS Estimator is BLUE

Hence, the covariance $\mathbb{E}\left[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\top}\right]$ satisfies

$$
\begin{aligned}
\mathbb{E} & {\left[\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{Y}-\beta\right)\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{Y}-\beta\right)^{\top}\right] } \\
& =\mathbb{E}\left[\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{X} \beta+\varepsilon)-\beta\right)\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{X} \beta+\varepsilon)-\beta\right)^{\top}\right] \\
& =\mathbb{E}\left[\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \varepsilon+\beta-\beta\right)\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \varepsilon+\beta-\beta\right)^{\top}\right] \\
& =\mathbb{E}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\top} \varepsilon \varepsilon^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}}\right) \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbb{E}\left(\varepsilon \varepsilon^{\top}\right) \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}}=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}} .
\end{aligned}
$$

OLS Estimator is BLUE

Let $\tilde{\beta}$ be any other linear unbiased estimator, where linear means $\tilde{\beta}=\mathbf{H} Y$ for some \mathbf{H}. Since $\tilde{\beta}$ is unbiased,

$$
\beta=\mathbb{E}(\tilde{\beta})=\mathbb{E}(\mathbf{H} Y)=\mathbf{H} \mathbb{E}(\mathbf{X} \beta+\varepsilon)=\mathbf{H X} \beta \Longrightarrow \mathbf{H X}=I_{d} .
$$

for \mathbf{C} satisfying $\mathbf{C X}=\mathbf{0}$

OLS Estimator is BLUE

Let $\tilde{\beta}$ be any other linear unbiased estimator, where linear means $\tilde{\beta}=\mathbf{H} Y$ for some \mathbf{H}. Since $\tilde{\beta}$ is unbiased,

$$
\beta=\mathbb{E}(\tilde{\beta})=\mathbb{E}(\mathbf{H} Y)=\mathbf{H} \mathbb{E}(\mathbf{X} \beta+\varepsilon)=\mathbf{H X} \beta \Longrightarrow \mathbf{H X}=I_{d} .
$$

We know that $\left[\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\right] \mathbf{X}=I_{d}$, so write

$$
\mathbf{H}:=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}+\mathbf{C},
$$

for \mathbf{C} satisfying $\mathbf{C X}=\mathbf{0}$.

OLS Estimator is BLUE

Then since

$$
\operatorname{Cov}(Y)=\operatorname{Cov}(\mathbf{X} \beta+\varepsilon)=\operatorname{Cov}(\varepsilon)=\sigma^{2} l_{d},
$$

we see

$$
\begin{aligned}
\operatorname{Cov}(\tilde{\beta})= & \operatorname{Cov}(\mathbf{H} Y)=\mathbf{H} \operatorname{Cov}(Y) \mathbf{H}^{\top}=\sigma^{2} \mathbf{H} \mathbf{H}^{\top} \\
= & \sigma^{2}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\top}+\mathbf{C}\right)\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\top}+\mathbf{C}\right)^{\top} \\
= & \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}} \\
& +\mathbf{C X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}}+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{C}^{\top}+\mathbf{C} \mathbf{C}^{\top} \\
= & \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-\mathbf{1}}+\sigma^{2} \mathbf{C} \mathbf{C}^{\top}
\end{aligned}
$$

since $\mathbf{C X}=\mathbf{0}$.

OLS Estimator is BLUE

- So we have shown for any other estimator $\tilde{\beta}$ that is a linear function of Y and is unbiased that its variance is the variance of $\hat{\beta}$ plus the matrix $\sigma^{2} \mathbf{C C}^{\top}$
- In particular, $\sigma^{2} \mathbf{C C}^{\top}$ is a positive semidefinite matrix, meaning the variance of $\hat{\beta}$ exceeds that of $\hat{\beta}$ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

OLS Estimator is BLUE

- So we have shown for any other estimator $\tilde{\beta}$ that is a linear function of Y and is unbiased that its variance is the variance of $\hat{\beta}$ plus the matrix $\sigma^{2} \mathbf{C C}^{\top}$
- In particular, $\sigma^{2} \mathbf{C C}^{\top}$ is a positive semidefinite matrix, meaning the variance of $\tilde{\beta}$ exceeds that of $\hat{\beta}$ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

OLS Estimator is BLUE

- So we have shown for any other estimator $\tilde{\beta}$ that is a linear function of Y and is unbiased that its variance is the variance of $\hat{\beta}$ plus the matrix $\sigma^{2} \mathbf{C C}^{\top}$
- In particular, $\sigma^{2} \mathbf{C} \mathbf{C}^{\top}$ is a positive semidefinite matrix, meaning the variance of $\tilde{\beta}$ exceeds that of $\hat{\beta}$ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

\#1Oyearchallenge

Figure: Source: https://medium.com/nybles/understanding-machine-learning-through-memes-4580b67527bf

Variable Selection Techniques

- Some regression problems have a very large number of predictors $d \geq n$, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
- AIC
- BIC
- MSE
- AIC and BIC penalize for having too many variables - a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

Variable Selection Techniques

- Some regression problems have a very large number of predictors $d \geq n$, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
- AIC
- BIC
- MSE
- AIC and BIC penalize for having too many variables - a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

Variable Selection Techniques

- Some regression problems have a very large number of predictors $d \geq n$, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
- AIC
- BIC
- MSE
- AIC and BIC penalize for having too many variables - a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

Variable Selection Techniques

- Some regression problems have a very large number of predictors $d \geq n$, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
- AIC
- BIC
- MSE
- AIC and BIC penalize for having too many variables - a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

Stepwise Regression

(1) Initiate $V:=\emptyset$
(2) for each variable $v \notin V$:
(1) Run a model with all the variables in V and the variable v_{i}
(2) keep track of the AIC/BIC
(3) Find the variable v^{*} that maximizes AIC, and set $V:=V \cup v^{*}$.
(4) go back to step 2

Penalized Regression

- Instead of minimizing the objective $\|\mathbf{X} \beta-Y\|_{2}^{2}$, one can add a regularization term
- Examples:
- $\lambda\|\beta\|_{1}$ (Lasso)
- $\lambda\|\beta\|_{2}$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

Penalized Regression

- Instead of minimizing the objective $\|\mathbf{X} \beta-Y\|_{2}^{2}$, one can add a regularization term
- Examples:
- $\lambda\|\beta\|_{1}$ (Lasso)
- $\lambda\|\beta\|_{2}$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

Penalized Regression

- Instead of minimizing the objective $\|\mathbf{X} \beta-Y\|_{2}^{2}$, one can add a regularization term
- Examples:
- $\lambda\|\beta\|_{1}$ (Lasso)
- $\lambda\|\beta\|_{2}$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

Penalized Regression

- Instead of minimizing the objective $\|\mathbf{X} \beta-Y\|_{2}^{2}$, one can add a regularization term
- Examples:
- $\lambda\|\beta\|_{1}$ (Lasso)
- $\lambda\|\beta\|_{2}$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

Outline

(5) Machine Learning

- Supervised Learning
- Unsupervised Learning

Figure: Source: https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
- Regression (continuous response)
- Classification (categorical response variable)
- Unsupervised learning:
- No specific response variable
- Dimensionality Reduction
- Clustering
- Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Crash Course on Machine Learning

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is princinled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

Crash Course on Machine Learning

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

Crash Course on Machine Learning

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

Crash Course on Machine Learning

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

Crash Course on Machine Learning

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

Figure: Source: https://xkcd.com/1838/

Coursework

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

Coursework

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine
Learning II) cover modern techniques and theory for
machine learning including optimization

Coursework

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

Coursework

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

Coursework

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

Coursework

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

Figure: Source: https://pythonhosted.org/PyQt-Fit/NonParam_tut.html

Regression

- Idea is we have covariates \mathbf{X} (as in the linear regression case), and seek to discover $Y_{i}=f\left(X_{i}\right)$ for some function f
- Sometimes f is linear $\left(f\left(X_{i}\right)=X_{i}^{\top} \beta\right)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
- f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
- Statistics studies the statistical properties of \hat{f}
- Machine Learning studies how to optimize the objective function for \hat{f}

Regression

- Idea is we have covariates \mathbf{X} (as in the linear regression case), and seek to discover $Y_{i}=f\left(X_{i}\right)$ for some function f
- Sometimes f is linear $\left(f\left(X_{i}\right)=X_{i}^{\top} \beta\right)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
- f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
- Statistics studies the statistical properties of \hat{f}
- Machine Learning studies how to optimize the objective function for \hat{f}

Regression

- Idea is we have covariates \mathbf{X} (as in the linear regression case), and seek to discover $Y_{i}=f\left(X_{i}\right)$ for some function f
- Sometimes f is linear $\left(f\left(X_{i}\right)=X_{i}^{\top} \beta\right)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
- f is a smooth function, and we minimize some objective
function to find our estimator \hat{f} (nonparametric)
- Statistics studies the statistical properties of \hat{f}
- Machine Learning studies how to optimize the objective function for \hat{f}

Regression

- Idea is we have covariates \mathbf{X} (as in the linear regression case), and seek to discover $Y_{i}=f\left(X_{i}\right)$ for some function f
- Sometimes f is linear $\left(f\left(X_{i}\right)=X_{i}^{\top} \beta\right)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
- f is a smooth function, and we minimize some objective
function to find our estimator \hat{f} (nonparametric)
- Statistics studies the statistical properties of f
- Machine Learning studies how to optimize the objective function for \hat{f}

Regression

- Idea is we have covariates \mathbf{X} (as in the linear regression case), and seek to discover $Y_{i}=f\left(X_{i}\right)$ for some function f
- Sometimes f is linear $\left(f\left(X_{i}\right)=X_{i}^{\top} \beta\right)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
- f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
- Statistics studies the statistical properties of \hat{f}
- Machine Learning studies how to optimize the objective function for \hat{f}

Regression

- Idea is we have covariates \mathbf{X} (as in the linear regression case), and seek to discover $Y_{i}=f\left(X_{i}\right)$ for some function f
- Sometimes f is linear $\left(f\left(X_{i}\right)=X_{i}^{\top} \beta\right)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
- f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
- Statistics studies the statistical properties of \hat{f}
- Machine Learning studies how to optimize the objective function for \hat{f}

Regression

- Typically study

$$
\inf _{f \in \mathcal{F}_{0}} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{\eta}
$$

for η some norm and \mathcal{F} some (computable) function class

- Often want to minimize MSE $(\eta=2)$
- Examples of ML algorithms to find f above:
- Random Forests
- Neural Networks
- Linear Regression
- Nonparametric Regression (splines and things)
- More involved classes of functions

Regression

- Typically study

$$
\inf _{f \in \mathcal{F}_{0}} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{\eta}
$$

for η some norm and \mathcal{F} some (computable) function class

- Often want to minimize MSE $(\eta=2)$
- Examples of ML algorithms to find f above:
- Random Forests
- Neural Networks
- Linear Regression
- Nonparametric Regression (splines and things)
- More involved classes of functions

Regression

- Typically study

$$
\inf _{f \in \mathcal{F}_{0}} \sum_{i=1}^{n}\left\|f\left(X_{i}\right)-Y_{i}\right\|_{\eta}
$$

for η some norm and \mathcal{F} some (computable) function class

- Often want to minimize MSE ($\eta=2$)
- Examples of ML algorithms to find f above:
- Random Forests
- Neural Networks
- Linear Regression
- Nonparametric Regression (splines and things)
- More involved classes of functions

Classification

- Response variable $Y_{i} \in\{1, \ldots, K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
- K-NN
- Random Forests
- Logistic Regression
- Neural Networks
- Similar ideas to Regression

Classification

- Response variable $Y_{i} \in\{1, \ldots, K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
- K-NN
- Random Forests
- Logistic Regression
- Neural Networks
- Similar ideas to Regression

Classification

- Response variable $Y_{i} \in\{1, \ldots, K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
- K-NN
- Random Forests
- Logistic Regression
- Neural Networks
- Similar ideas to Regression

Classification

- Response variable $Y_{i} \in\{1, \ldots, K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
- K-NN
- Random Forests
- Logistic Regression
- Neural Networks
- Similar ideas to Regression

Supervised Learning

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other ontimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
- Matrix Completion
- Subspace Clustering
- Graph Clustering
- Tensor Methods

Supervised Learning

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal f
- Also works in more "exotic" situations
- Matrix Completion
- Subspace Clustering
- Graph Clustering
- Tensor Methods

Supervised Learning

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
- Matrix Completion
- Subspace Clustering
- Graph Clustering
- Tensor Methods

Supervised Learning

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}

Supervised Learning

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations

Supervised Learning

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
- Matrix Completion
- Subspace Clustering
- Graph Clustering
- Tensor Methods

Figure: Source:
https://www.datasciencecentral.com/profiles/blogs/alternatives-to-the-gradient-descent-algorithm

Machine learning behind the scenes

Figure: Source:
https://me.me/i/machine-learning-gradient-descent-machine-learning-machine-learning-behind-the-ea8fe9fc64054eda89232d7ffc9ba60e

Unsupervised Learning

- Want to uncover some hidden structure in the data
- Hidden structure could be:
- Sparsity
- Linearity
- "Smooth" Nonlinearity
- Clusters
- Algorithms proposed for different assumed structure in the data

Unsupervised Learning

- Want to uncover some hidden structure in the data
- Hidden structure could be:
- Sparsity
- Linearity
- "Smooth" Nonlinearity
- Clusters
- Algorithms proposed for different assumed structure in the data

Unsupervised Learning

- Want to uncover some hidden structure in the data
- Hidden structure could be:
- Sparsity
- Linearity
- "Smooth" Nonlinearity
- Clusters
- Algorithms proposed for different assumed structure in the data

Unsupervised Learning

- Want to uncover some hidden structure in the data
- Hidden structure could be:
- Sparsity
- Linearity
- "Smooth" Nonlinearity
- Clusters
- Algorithms proposed for different assumed structure in the data

Unsupervised Learning

- Want to uncover some hidden structure in the data
- Hidden structure could be:
- Sparsity
- Linearity
- "Smooth" Nonlinearity
- Clusters
- Algorithms proposed for different assumed structure in the data

Unsupervised Learning

- Want to uncover some hidden structure in the data
- Hidden structure could be:
- Sparsity
- Linearity
- "Smooth" Nonlinearity
- Clusters
- Algorithms proposed for different assumed structure in the data
- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Hiahly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction
- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction
- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction
- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

Suppose $\mathbb{E}(X)=0$ and $\mathbb{E}\left(X X^{\top}\right)=\Sigma_{0}+\sigma^{2} I_{d}$, where Σ_{0} is rank $r<d$. Then

$$
\begin{aligned}
\mathbb{E}\left(X X^{\top}\right) & =\underbrace{\mathbf{U D U}^{\top}}_{\text {top } r \text { eigenvectors }}+\underbrace{\mathbf{U}_{\perp} \mathbf{D}_{\perp} \mathbf{U}_{\perp}^{\top}}_{\text {bottom }} \\
\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} & =\underbrace{\hat{\mathbf{U} \hat{\mathbf{D}} \hat{\mathbf{U}}^{\top}}}_{\text {topenvectors }}+\underbrace{\hat{\mathbf{U}}_{\perp} \hat{\mathbf{D}}_{\perp} \hat{\mathbf{U}}_{\perp}^{\top}}_{\text {bottonemectors }}
\end{aligned}
$$

Idea is that when $d_{r}-d_{r+1}$ is sufficiently large then

$$
\hat{\mathbf{U}} \approx \mathbf{U} \quad \hat{\mathbf{D}} \approx \mathbf{D} .
$$

Figure: Source: https://towardsdatascience.com/pca-is-not-feature-selection-3344fb764ae6

Manifold Learning

- Assume we observe $X_{i} \in \mathbb{R}^{D}$, where D is very large
- Idea is X_{i} are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^{D}$, where \mathcal{M} is of dimension $d<D$
- Example: X_{i} are from the unit sphere in \mathbb{R}^{D}, then \mathcal{M} is of dimension $d=D-1$
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

Manifold Learning

- Assume we observe $X_{i} \in \mathbb{R}^{D}$, where D is very large
- Idea is X_{i} are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^{D}$, where \mathcal{M} is of dimension $d<D$
- Example: X_{i} are from the unit sphere in \mathbb{R}^{D}, then \mathcal{M} is of dimension $d=D-1$
- Manifold Learnina seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

Manifold Learning

- Assume we observe $X_{i} \in \mathbb{R}^{D}$, where D is very large
- Idea is X_{i} are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^{D}$, where \mathcal{M} is of dimension $d<D$
- Example: X_{i} are from the unit sphere in \mathbb{R}^{D}, then \mathcal{M} is of dimension $d=D-1$
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear
dimensionality reduction)

Manifold Learning

- Assume we observe $X_{i} \in \mathbb{R}^{D}$, where D is very large
- Idea is X_{i} are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^{D}$, where \mathcal{M} is of dimension $d<D$
- Example: X_{i} are from the unit sphere in \mathbb{R}^{D}, then \mathcal{M} is of dimension $d=D-1$
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

Manifold Learning

- Assume we observe $X_{i} \in \mathbb{R}^{D}$, where D is very large
- Idea is X_{i} are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^{D}$, where \mathcal{M} is of dimension $d<D$
- Example: X_{i} are from the unit sphere in \mathbb{R}^{D}, then \mathcal{M} is of dimension $d=D-1$
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

Figure: Source: https://www.semanticscholar.org/paper/Algorithms-for-manifold-learningCayton/100dcf6aa83ac559c83518c8a41676b1a3a55fc0/figure/0

Clustering

- Clustering assumes data come from a mixture and seeks to estimate the clusters
- Examples:
- K-Means (uses only means)
- Expectation Maximization Algorithm (Mixtures of Gaussians)
- Spectral Clustering -clusters using eigenvectors of a matrix

Clustering

- Clustering assumes data come from a mixture and seeks to estimate the clusters
- Examples:
- K-Means (uses only means)
- Expectation Maximization Algorithm (Mixtures of Gaussians)
- Spectral Clustering -clusters using eigenvectors of a matrix

Figure: Source:
https://www.geeksforgeeks.org/clustering-in-machine-learning/

Outline

(6) Nonparametric and High-Dimensional Statistics

- Nonparametric Statistics
- High-Dimensional Statistics

Nonparametric Statistics

- Recall we had a family of distributions \mathcal{F}
- Parametric required that $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta \subset \mathbb{R}^{d}\right\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

Nonparametric Statistics

- Recall we had a family of distributions \mathcal{F}
- Parametric required that $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta \subset \mathbb{R}^{d}\right\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

Nonparametric Statistics

- Recall we had a family of distributions \mathcal{F}
- Parametric required that $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta \subset \mathbb{R}^{d}\right\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

Nonparametric Statistics

- Recall we had a family of distributions \mathcal{F}
- Parametric required that $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta \subset \mathbb{R}^{d}\right\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

Nonparametric Statistics

- Recall we had a family of distributions \mathcal{F}
- Parametric required that $\mathcal{F}=\left\{f_{\theta}: \theta \in \Theta \subset \mathbb{R}^{d}\right\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

High-Dimensional Issues

Let X_{1}, \ldots, X_{n} be iid such that $\mathbb{E} X=\mu \in \mathbb{R}^{d}$ with covariance $\sigma^{2} l_{d}$.

$$
\begin{aligned}
\mathbb{P}(\|\bar{X}-\mu\|>\varepsilon) & =\mathbb{P}\left(\|\bar{X}-\mu\|^{2}>\varepsilon^{2}\right) \leq \frac{\mathbb{E}\left(\sum_{j=1}^{d}[\bar{X}(j)-\mu(j)]^{2}\right)}{\varepsilon^{2}} \\
& =\frac{d \mathbb{E}\left(\bar{X}(j)-\mu_{j}\right)^{2}}{\varepsilon^{2}}=\frac{d \sigma^{2}}{\varepsilon^{2}}
\end{aligned}
$$

This shows that

When d is very small with respect to n, then this is quite useful. But if $\sigma=1$ and $d \approx n$, then this bound is uninformative!

High-Dimensional Issues

Let X_{1}, \ldots, X_{n} be iid such that $\mathbb{E} X=\mu \in \mathbb{R}^{d}$ with covariance $\sigma^{2} l_{d}$.

$$
\begin{aligned}
\mathbb{P}(\|\bar{X}-\mu\|>\varepsilon) & =\mathbb{P}\left(\|\bar{X}-\mu\|^{2}>\varepsilon^{2}\right) \leq \frac{\mathbb{E}\left(\sum_{j=1}^{d}[\bar{X}(j)-\mu(j)]^{2}\right)}{\varepsilon^{2}} \\
& =\frac{d \mathbb{E}\left(\bar{X}(j)-\mu_{j}\right)^{2}}{\varepsilon^{2}}=\frac{d \sigma^{2}}{\varepsilon^{2}}
\end{aligned}
$$

This shows that

$$
\mathbb{P}(\|\bar{X}-\mu\|>\sigma \sqrt{n d}) \leq \frac{1}{n}
$$

When d is very small with respect to n, then this is quite useful. But if $\sigma=1$ and $d \approx n$, then this bound is uninformative!

High-Dimensional Issues

Let X_{1}, \ldots, X_{n} be iid such that $\mathbb{E} X=\mu \in \mathbb{R}^{d}$ with covariance $\sigma^{2} l_{d}$.

$$
\begin{aligned}
\mathbb{P}(\|\bar{X}-\mu\|>\varepsilon) & =\mathbb{P}\left(\|\bar{X}-\mu\|^{2}>\varepsilon^{2}\right) \leq \frac{\mathbb{E}\left(\sum_{j=1}^{d}[\bar{X}(j)-\mu(j)]^{2}\right)}{\varepsilon^{2}} \\
& =\frac{d \mathbb{E}\left(\bar{X}(j)-\mu_{j}\right)^{2}}{\varepsilon^{2}}=\frac{d \sigma^{2}}{\varepsilon^{2}}
\end{aligned}
$$

This shows that

$$
\mathbb{P}(\|\bar{X}-\mu\|>\sigma \sqrt{n d}) \leq \frac{1}{n}
$$

When d is very small with respect to n, then this is quite useful. But if $\sigma=1$ and $d \approx n$, then this bound is uninformative!

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
- Fixed dimension, fixed n results (Wainwright, 2019; Vershynin, 2018)
- Asymptotics as $n, d \rightarrow \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
- Fixed dimension, fixed n results (Wainwright, 2019; Vershynin, 2018)
- Asymptotics as $n, d \rightarrow \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
- Fixed dimension, fixed n results (Wainwright, 2019; Vershynin, 2018)
- Asymptotics as $n, d \rightarrow \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

Thank you!

I am available for questions and Zoom if you have further questions and would like to discuss statistics or anything!

References I

P.J. Bickel and K.A. Doksum. Mathematical Statistics: Basic Ideas and Selected Topics. Number v. 1 in Mathematical Statistics: Basic Ideas and Selected Topics. Pearson Prentice Hall, 2007. ISBN 9780132306379.
P.J. Bickel, C.A.J. Klaassen, Y. Ritov, and J.A. Wellner. Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins series in the mathematical sciences. Springer New York, 1998. ISBN 9780387984735.
A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer New York, 2008. ISBN 9780387790527.
A.W. van der Vaart. Asymptotic Statistics. Asymptotic Statistics. Cambridge University Press, 2000. ISBN 9780521784504.

References II

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2018. doi: 10.1017/9781108231596.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/9781108627771.

