Statistics Review

Joshua Agterberg

Johns Hopkins University

Zoom

Joshua Agterberg Statistics Review

・ロト ・四ト ・ヨト ・ヨト

3

- 2 Exact Parametric Methods
- 3 Large-Sample Parametric Methods
- 4 Linear Regression
- Machine Learning
- 6 Nonparametric and High-Dimensional Statistics

< 同 > < 三 > <

BRACE YOURSELF

STATS ARE COMING

Figure: Source: https://sarahmarley.com/2015/07/30/why-statistics-is-not-just-maths/

Joshua Agterberg

tatistics Review

DIYLOL.COM

Notes available at my website

▲ロト▲御ト▲恵ト▲恵ト 恵 めんぐ

Outline

- Samples and Population
- Main Ideas

・ロト ・部ト ・ヨト ・ヨト

3

Samples and Population

• We have a population distribution f_0 and a model $\mathcal{F} = \{f : f \in \mathcal{F}\}$

• Goal: extract some information about f_0 from \mathcal{F} .

• Examples:

- Population follows a $N(\mu_0, \sigma_0^2)$ distribution, and from the set $\mathcal{F} := \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$
- Population exhibits some probability p₀ of having an attribute (e.g. having COVID-19), and consider *F* = *Binomial*(n, p), p > 0.
- Population follows some continuous distribution f₀ and we set F = { all continuous distributions }.

・ロト ・ 四 ト ・ 回 ト ・

Samples and Population

- We have a population distribution f_0 and a model $\mathcal{F} = \{f : f \in \mathcal{F}\}$
- Goal: extract some information about f_0 from \mathcal{F} .
- Examples:
 - Population follows a $N(\mu_0, \sigma_0^2)$ distribution, and from the set $\mathcal{F} := \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$
 - Population exhibits some probability p₀ of having an attribute (e.g. having COVID-19), and consider *F* = *Binomial*(n, p), p > 0.
 - Population follows some continuous distribution f₀ and we set F = { all continuous distributions }.

Samples and Population

- We have a population distribution f_0 and a model $\mathcal{F} = \{f : f \in \mathcal{F}\}$
- Goal: extract some information about f_0 from \mathcal{F} .
- Examples:
 - Population follows a $N(\mu_0, \sigma_0^2)$ distribution, and from the set $\mathcal{F} := \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$
 - Population exhibits some probability p_0 of having an attribute (e.g. having COVID-19), and consider $\mathcal{F} = Binomial(n, p), p > 0.$
 - Population follows some continuous distribution f₀ and we set F = { all continuous distributions }.

Parametric Families

- If the family satisfies *F* := {*f*_θ : θ ∈ ℝ^d}, then we say it is *parametric*
- Examples of parametric families:
 - Bernoulli: X ∼ Ber(p), P(X = 1) = p
 - Binomial: $X \sim Bin(n, p), P(X = k) = \binom{n}{k} p^k (1 p)^{n-k},$ $Bin(n, p) = \sum_{i=1}^{n} Ber(p)$
 - Normal: $X \sim N(\mu, \sigma^2), f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Bin(n,p) $\approx N(np, npq), \frac{N(\mu, \sigma^2) - \mu}{\sigma} = N(0, 1)$
 - Chi-square: $X \sim \chi^2_{\nu}, \, \chi^2_{\nu} = \sum_{i,j=1}^{\nu} N(0,1)^2$
 - t-distribution: $X \sim t_{\nu}, t_{\nu} = \frac{N(0,1)}{\sqrt{\chi_{\nu}^2/\nu}}, t_{\infty} = N(0,1), t_0 =$ Cauchy (undefined mean and variance)
 - F-distribution $X \sim F_{n,m}$, $F_{n,m} = \frac{\chi_n^2/n}{\chi_m/m}$, $t_{\nu}^2 = F_{1,\nu}$
 - Others: Exponential, Poisson, Gamma, Beta, Negative Binomial, ...

크

Parametric Families

- If the family satisfies *F* := {*f*_θ : θ ∈ ℝ^d}, then we say it is *parametric*
- Examples of parametric families:
 - Bernoulli: X ∼ Ber(p), P(X = 1) = p
 - Binomial: $X \sim Bin(n, p), P(X = k) = \binom{n}{k} p^k (1 p)^{n-k},$ Bin(n, p) = $\sum_{i=1}^{n} Ber(p)$
 - Normal: $X \sim N(\mu, \sigma^2), f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Bin(n,p) $\approx N(np, npq), \frac{N(\mu, \sigma^2) - \mu}{\sigma} = N(0, 1)$
 - Chi-square: $X \sim \chi^2_{\nu}, \, \chi^2_{\nu} = \sum_{i=1}^{\nu} N(0, 1)^2$
 - t-distribution: $X \sim t_{\nu}$, $t_{\nu} = \frac{N(0,1)}{\sqrt{\chi_{\nu}^2/\nu}}$, $t_{\infty} = N(0,1)$, $t_0 = Cauchy$ (undefined mean and variance)
 - F-distribution $X \sim F_{n,m}$, $F_{n,m} = \frac{\chi_n^2/n}{\chi_m/m}$, $t_{\nu}^2 = F_{1,\nu}$
 - Others: Exponential, Poisson, Gamma, Beta, Negative Binomial, ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Figure: Source: https://www.facebook.com/statsmemes/photos/a.306077739764526/975685

Nonparametric Families

- If the family *F* is infinite-dimensional, we (typically) say it is nonparametric (Tsybakov, 2008)
- Semiparametric out-of-scope (Bickel et al., 1998)
- Examples of nonparametric families
 - *F* := {*f* : 𝔼_{*f*} |*X*|² < ∞}; i.e. the set of distributions with finite second moment

 - $\mathcal{F} := \{ f : f \text{ is a continuous density} \}$
 - $\mathcal{F} := \{ f : f \text{ is infinitely differentiable} \}$
 - $\mathcal{F} := \{f : f \text{ has the property that} \\ \log f(tx + (1 t)y) \ge t \log f(x) + (1 t) \log f(y) \\ (\text{log-concave distributions see Samworth})$
 - $\mathcal{F} := \{ f : f \text{ is has continuous derivatives up to order } r \}$

Nonparametric Families

- If the family *F* is infinite-dimensional, we (typically) say it is nonparametric (Tsybakov, 2008)
- Semiparametric out-of-scope (Bickel et al., 1998)
- Examples of nonparametric families
 - *F* := {*f* : 𝔼_{*f*} |*X*|² < ∞}; i.e. the set of distributions with finite second moment
 - $\mathcal{F} := \{f : f \text{ is a continuous density}\}$
 - $\mathcal{F} := \{f : f \text{ is infinitely differentiable}\}$
 - $\mathcal{F} := \{f : f \text{ has the property that} \\ \log f(tx + (1 t)y) \ge t \log f(x) + (1 t) \log f(y) \\ (\text{log-concave distributions see Samworth})$
 - $\mathcal{F} := \{f : f \text{ is has continuous derivatives up to order } r\}$

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロト ・四ト ・ヨト

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

・ロ・ ・ 四・ ・ 回・ ・ 回・

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

< 日 > < 回 > < 回 > < 回 > < 回 > <

A note on prerequisites

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

・ロト ・日 ・ ・ ヨ ・ ・

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

・ロト ・日 ・ ・ ヨ ・ ・

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

< D > < B > < E > < E</p>

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

イロト イヨト イヨト イヨト

Outline

2 Exact Parametric Methods

- Estimation
- One-Sample Testing
- Two-Sample Testing

イロト イヨト イヨト イヨト

Ξ.

Exact Parametric Methods

In some cases, if we assume the population has a distribution, we can explicitly characterize the finite-sample distribution

Figure: Source: https://www.pinterest.com/pin/246853623302262497/

< D > < B > < E > <</p>

- Data: $X_i \sim N(\mu, \sigma^2)$
- Estimator: $\hat{\mu} = \bar{X}$

• Distribution:
$$\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$$
 ("proof": $\frac{\bar{X}-\mu}{s/\sqrt{n}} = \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{s^2/\sigma^2}}$)

₽.

・ロト ・四ト ・ヨト ・ヨト

Ξ.

• C.I.:
$$\bar{X} \pm t_{n-1} (\alpha/2) \frac{s}{\sqrt{n}}$$

We know the *exact* distribution when $X_i \sim N(\mu, \sigma^2)$.

- Data: $X_i \sim N(\mu, \sigma^2)$
- Estimator: $\hat{\mu} = \bar{X}$

• Distribution:
$$\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$$
 ("proof": $\frac{\bar{X}-\mu}{s/\sqrt{n}} = \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{s^2/\sigma^2}}$)

• C.I.:
$$\bar{X} \pm t_{n-1} (\alpha/2) \frac{s}{\sqrt{n}}$$

We know the *exact* distribution when $X_i \sim N(\mu, \sigma^2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- If X_i ~ N(μ, σ²), we want to test whether the mean is equal to μ₀
- Form the hypotheses

 $H_0: \mu = \mu_0$ $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the test statistic $T = \frac{\overline{X} \mu_0}{s/\sqrt{n}}$, where *s* is the sample standard deviation
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

・ロト ・四ト ・ヨト ・ヨト

- If X_i ~ N(μ, σ²), we want to test whether the mean is equal to μ₀
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the *test statistic* $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where *s* is the *sample standard deviation*
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

- If X_i ~ N(μ, σ²), we want to test whether the mean is equal to μ₀
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the *test statistic* $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where *s* is the *sample standard deviation*

• Reject at level α if $|T| > t_{n-1}(\alpha/2)$

- If X_i ~ N(μ, σ²), we want to test whether the mean is equal to μ₀
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the *test statistic* $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where *s* is the *sample standard deviation*
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/

<ロ> <同> <同> < 同> < 同> < 同> <

크

Two-Sample Testing

•
$$X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$$

• Want to test $\mu_X = \mu_Y$

• Form the hypothesis:

 $H_0: \mu_X = \mu_Y$ $H_A: \mu_X \neq \mu_Y$

• Test statistic:
$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_p^2}{n} + \frac{s_p^2}{m}}} \sim t_{n-1}$$
, where

$$s_p^2 := \frac{(n-1)s_{\bar{\chi}} + (m-1)s_{\bar{\chi}}}{n+m-2}$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

크

• Rejection region: $|T| > t_{n-1}(\alpha/2)$
Two-Sample Testing

•
$$X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$$

- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$H_0: \mu_X = \mu_Y$$

 $H_A: \mu_X \neq \mu_Y$

• Test statistic:
$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_p^2}{n} + \frac{s_p^2}{m}}} \sim t_{n-1}$$
, where

$$s_p^2 := rac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

Two-Sample Testing

•
$$X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$$

- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$egin{array}{ll} H_{0}: \mu_{X} = \mu_{Y} \ H_{A}: \mu_{X}
eq \mu_{Y} \end{array}$$

• Test statistic:
$$T = rac{ar{X} - ar{Y}}{\sqrt{rac{s_p^2}{n} + rac{s_p^2}{m}}} \sim t_{n-1}$$
, where $s_p^2 := rac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

イロト イヨト イヨト イヨト

æ

Two-Sample Testing

•
$$X_i \sim N(\mu_X, \sigma_X^2), \ Y_i \sim N(\mu_Y, \sigma_Y^2)$$

- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$H_0: \mu_X = \mu_Y$$

 $H_A: \mu_X \neq \mu_Y$

• Test statistic:
$$T = rac{ar{\chi} - ar{Y}}{\sqrt{rac{s_P^2}{n} + rac{s_P^2}{m}}} \sim t_{n-1}$$
, where $s_p^2 := rac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/

<ロ> <同> <同> < 同> < 同> < 同> <

크

Know exact distribution of data

- Calculate its exact distribution under the null H₀ (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ², multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H₀ (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ², multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H₀ (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ², multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H₀ (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ², multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H₀ (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ², multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Two-Sided One-Sample T-Test (t-dist. with df = 99 , t = 2.8632 , p = 0.005 , alpha = 0.05)

Possible Mean Values

ロトス団トスモトメモト

æ

Figure: Source: https://stats.stackexchange.com/questions/220434/hypothesistesting-why-center-the-sampling-distribution-on-h0

Outline

3 Large-Sample Parametric Methods

- Central Limit Theorem
- Estimation and Testing for Proportions
- Estimation and Testing for More General Parametric Families

イロト イヨト イヨト イヨト

In many cases, we do not know exact distribution of the data

 Nevertheless, with enough samples, we can use the asymptotic results from probability theory, namely the Central Limit Theorem

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- In many cases, we do not know exact distribution of the data
- Nevertheless, with enough samples, we can use the asymptotic results from probability theory, namely the Central Limit Theorem

Central Limit Theorem

• $X_1, ..., X_n \sim F$ iid

Define

$$S_n := \sum_{i=1}^n X_i$$

• Then as $n \to \infty$, we have that

$$\frac{S_n - n\mu}{\sigma/\sqrt{n}} \to N(0,1)$$

 Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Central Limit Theorem

Define

$$S_n := \sum_{i=1}^n X_i$$

• Then as
$$n o \infty$$
, we have that

$$\frac{S_n - n\mu}{\sigma/\sqrt{n}} \to N(0,1)$$

 Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

크

Central Limit Theorem

• $X_1, ..., X_n \sim F$ iid

Define

$$S_n := \sum_{i=1}^n X_i$$

• Then as
$$n \to \infty$$
, we have that

$$\frac{S_n - n\mu}{\sigma/\sqrt{n}} \to N(0,1)$$

 Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Figure: Source: http://www.marketexpress.in/2016/11/central-limit-theorem-normal-distribution.html

イロト イヨト イヨト イヨト

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size *n* the distribution is *Binom*(*n*, *p*), where *p* = P(X_i = 1) = P(person *i* has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
 - H_0 : $\mathbb{P}(\text{drug X works}) = .8$
- Observation: for large *n*, by CLT

$$\frac{S_n-np}{\sigma/\sqrt{n}}\approx N(0,1),$$

where
$$S_n = \sum_{i=1}^n X_i$$
.

・ロト ・四ト ・ヨト ・ヨト

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size *n* the distribution is Binom(n, p), where $p = \mathbb{P}(X_i = 1) = \mathbb{P}(person i has the characteristic)$
- Want to either estimate p or perform Hypothesis test
- Example
 - H_0 : $\mathbb{P}(\text{drug X works}) = .8$
- Observation: for large *n*, by CLT

$$\frac{S_n-np}{\sigma/\sqrt{n}}\approx N(0,1),$$

where $S_n = \sum_{i=1}^n X_i$.

(日) (圖) (E) (E) (E)

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size *n* the distribution is Binom(n, p), where $p = \mathbb{P}(X_i = 1) = \mathbb{P}(person i has the characteristic)$
- Want to either estimate p or perform Hypothesis test
- Example
 - H_0 : $\mathbb{P}(\text{drug X works}) = .8$
- Observation: for large n, by CLT

$$\frac{S_n-np}{\sigma/\sqrt{n}}\approx N(0,1),$$

where $S_n = \sum_{i=1}^n X_i$.

(日) (圖) (E) (E) (E)

Figure: Source: https://blogs.sas.com/content/iml/2012/03/14/thenormal-approximation-to-the-binomial-distribution-how-the-quantilescompare.html

One-Sample Testing for Proportions using the CLT

- Hypothesis: $H_0: p = p_0$ vs. $H_A: p \neq p_0$
- Test statistics: $Z = \frac{\hat{p} p_0}{\sqrt{p_0(1 p_0)/n}} \sim N(0, 1)$
- Rejection region: $|Z| > z(\alpha/2)$

Two-Sample Testing for Proportions using the CLT

- Hypothesis: $H_0: p_X p_Y = D_0$ vs. $H_A: p_X p_Y \neq D_0$
- Test statistics: $Z = \frac{\hat{p}_X \hat{p}_Y D_0}{\sqrt{\frac{p_X(1-p_X)}{n} + \frac{p_Y(1-p_Y)}{m}}} \sim N(0, 1)$

• Rejection region: $|Z| > z(\alpha/2)$

Other Tests

Can perform tests for variance, goodness-of-fit, etc., using CLT

- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0, 1)^2 \approx \xi^2(1)$
 - *F* is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

・ロト ・四ト ・ヨト

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0, 1)^2 \approx \xi^2(1)$
 - *F* is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0, 1)^2 \approx \xi^2(1)$
 - *F* is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0, 1)^2 \approx \xi^2(1)$
 - *F* is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0, 1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0, 1)^2 \approx \xi^2(1)$
 - *F* is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

Consistency

• Suppose $X_1, ..., X_n$ are iid f_{θ} , for $\theta \in \Theta$

- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_n \rightarrow \theta$ in probability, where this means

$$\lim_{n\to\infty} \mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbf{0}$$

for all $\varepsilon > 0$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Suppose $X_1, ..., X_n$ are iid f_{θ} , for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_n \rightarrow \theta$ in probability, where this means

$$\lim_{n\to\infty} \mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbf{0}$$

for all $\varepsilon > 0$.

- Suppose $X_1, ..., X_n$ are iid f_{θ} , for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_n \rightarrow \theta$ in probability, where this means

$$\lim_{n\to\infty}\mathbb{P}(|\hat{\theta}-\theta|>\varepsilon)=\mathsf{0}$$

for all $\varepsilon > 0$.

Figure: Source: https://www.facebook.com/StatisticalMemes/

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Example: $X_1, ..., X_n \sim U(0, \theta), \theta > 0.$ Set $\hat{\theta} := \max_{1 \le i \le n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} > \varepsilon) + \mathbb{P}(\hat{\theta} - \theta > \varepsilon)$$
(1)

$$= \mathbb{P}(\theta - \hat{\theta} > \varepsilon) + 0 \tag{2}$$

$$= \mathbb{P}(\theta - \varepsilon > \hat{\theta}) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
(3)

$$=\mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon)$$
(4)

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{5}$$

Where (3) is since $\hat{\theta} < \theta$ always, and by definition, (4) is because max $X_i < c$ if and only if all $X_i < c$, (5) is because the X_i 's are iid and the CDF of the uniform distribution.

Consistency Example

Example:
$$X_1, ..., X_n \sim U(0, \theta), \theta > 0$$
.
Set $\hat{\theta} := \max_{1 \le i \le n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} > \varepsilon) + \mathbb{P}(\hat{\theta} - \theta > \varepsilon)$$
(1)

$$=\mathbb{P}(\theta - \hat{\theta} > \varepsilon) + 0 \tag{2}$$

$$= \mathbb{P}(\theta - \varepsilon > \hat{\theta}) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (3)

$$=\mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon)$$
(4)

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{5}$$

(日)

Where (3) is since $\hat{\theta} < \theta$ always, and by definition, (4) is because max $X_i < c$ if and only if all $X_i < c$, (5) is because the X_i 's are iid and the CDF of the uniform distribution.

Consistency Example

Example:
$$X_1, ..., X_n \sim U(0, \theta), \theta > 0$$
.
Set $\hat{\theta} := \max_{1 \le i \le n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} > \varepsilon) + \mathbb{P}(\hat{\theta} - \theta > \varepsilon)$$
(1)

$$=\mathbb{P}(\theta - \hat{\theta} > \varepsilon) + 0 \tag{2}$$

$$= \mathbb{P}(\theta - \varepsilon > \hat{\theta}) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (3)

$$=\mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon)$$
(4)

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{5}$$

(日)

Where (3) is since $\hat{\theta} < \theta$ always, and by definition, (4) is because max $X_i < c$ if and only if all $X_i < c$, (5) is because the X_i 's are iid and the CDF of the uniform distribution.
Consistency Example

Example:
$$X_1, ..., X_n \sim U(0, \theta), \theta > 0$$
.
Set $\hat{\theta} := \max_{1 \le i \le n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} > \varepsilon) + \mathbb{P}(\hat{\theta} - \theta > \varepsilon)$$
(1)

$$=\mathbb{P}(\theta - \hat{\theta} > \varepsilon) + 0 \tag{2}$$

$$= \mathbb{P}(\theta - \varepsilon > \hat{\theta}) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (3)

$$=\mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon)$$
(4)

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{5}$$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Where (3) is since $\hat{\theta} < \theta$ always, and by definition, (4) is because max $X_i < c$ if and only if all $X_i < c$, (5) is because the X_i 's are iid and the CDF of the uniform distribution.

Hence, we see

$$\mathbb{P}|\hat{\theta} - \theta| > \varepsilon) = \left(\frac{\theta - \varepsilon}{\theta}\right)^n$$

which tends to zero for all $\varepsilon > 0$ since the term in the parentheses is less than 1.

So for X₁,..., X_n ~ U(0, θ), θ̂ = max_i X_i is *consistent* for θ.
But

$$\mathbb{E}(\hat{\theta}) = \frac{n}{n+1}\theta$$
 (check!)

・ロト ・聞 ト ・ ヨト ・ ヨト

which does not equal θ ! (it is biased)

Hence, we see

$$\mathbb{P}|\hat{\theta} - \theta| > \varepsilon) = \left(\frac{\theta - \varepsilon}{\theta}\right)^n$$

which tends to zero for all $\varepsilon > 0$ since the term in the parentheses is less than 1.

So for X₁,..., X_n ~ U(0, θ), θ̂ = max_i X_i is *consistent* for θ.
But

$$\mathbb{E}(\hat{\theta}) = \frac{n}{n+1}\theta$$
 (check!)

which does not equal θ ! (it is biased)

イロト イヨト イヨト イヨト

Hence, we see

$$\mathbb{P}|\hat{\theta} - \theta| > \varepsilon) = \left(\frac{\theta - \varepsilon}{\theta}\right)^n$$

which tends to zero for all $\varepsilon > 0$ since the term in the parentheses is less than 1.

• So for $X_1, ..., X_n \sim U(0, \theta), \hat{\theta} = \max_i X_i$ is *consistent* for θ .

But

$$\mathbb{E}(\hat{\theta}) = \frac{n}{n+1}\theta$$
 (check!)

which does not equal θ ! (it is biased)

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta}) \theta$. Say $\hat{\theta}$ is unbiased if bias = 0
- Define the Mean-Squared Error (MSE):

$$\mathbb{E}\left[(\hat{\theta} - \theta)^2 \right] = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta} + \mathbb{E}\hat{\theta} - \theta)^2 \right]$$
$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^2 + (\mathbb{E}\hat{\theta} - \theta)^2 + 2((\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta)) \right]$$
$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^2 \right] + (\mathbb{E}\hat{\theta} - \theta)^2 + 2\mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta) \right]$$
$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^2 \right] + (\mathbb{E}\hat{\theta} - \theta)^2$$
$$= \text{Variance}(\hat{\theta}) + \text{Bias}^2$$

・ロト ・ 日 ・ ・ ヨ ・ ・

∃ >

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta}) \theta$. Say $\hat{\theta}$ is *unbiased* if bias = 0
- Define the Mean-Squared Error (MSE):

$$\mathbb{E}\left[(\hat{\theta} - \theta)^{2}\right] = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta} + \mathbb{E}\hat{\theta} - \theta)^{2}\right]$$
$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{2} + (\mathbb{E}\hat{\theta} - \theta)^{2} + 2((\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta))\right]$$
$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{2}\right] + (\mathbb{E}\hat{\theta} - \theta)^{2} + 2\mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta)\right]$$
$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{2}\right] + (\mathbb{E}\hat{\theta} - \theta)^{2}$$
$$= \text{Variance}(\hat{\theta}) + \text{Bias}^{2}$$

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta}) \theta$. Say $\hat{\theta}$ is *unbiased* if bias = 0
- Define the Mean-Squared Error (MSE):

$$\begin{split} \mathbb{E}\Big[(\hat{\theta}-\theta)^2\Big] &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta}+\mathbb{E}\hat{\theta}-\theta)^2\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2 + (\mathbb{E}\hat{\theta}-\theta)^2 + 2((\hat{\theta}-\mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta}-\theta))\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2\Big] + (\mathbb{E}\hat{\theta}-\theta)^2 + 2\mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta}-\theta)\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2\Big] + (\mathbb{E}\hat{\theta}-\theta)^2 \\ &= \mathbb{Variance}(\hat{\theta}) + \mathsf{Bias}^2 \end{split}$$

< ロ > < 団 > < 豆 > <</p>

• For $X_1, ..., X_n \sim U(0, \theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased

The variance is ⁿ/_{(n+1)²(n+2)}θ² (do this!)
 So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

• Note that as $n \to \infty$, $MSE \to 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- For $X_1, ..., X_n \sim U(0, \theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is ⁿ/_{(n+1)²(n+2)}θ² (do this!)
 So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

• Note that as $n \to \infty$, $MSE \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- For $X_1, ..., X_n \sim U(0, \theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is $\frac{n}{(n+1)^2(n+2)}\theta^2$ (do this!)
- So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

• Note that as $n \to \infty$, $MSE \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- For $X_1, ..., X_n \sim U(0, \theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is $\frac{n}{(n+1)^2(n+2)}\theta^2$ (do this!)
- So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

• Note that as $n \to \infty$, $MSE \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Method of Moments

 The Method of Moments estimates the sample moments via

$$\hat{\mu}_k := \frac{1}{n} \sum_{i=1}^n X_i^k.$$

• Examples:

•
$$X \sim Poi(\lambda)$$
 : $\mu_1 = \lambda \Rightarrow \hat{\mu}_1 = \bar{X}$ and $\hat{\lambda} = \bar{X}$

•
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 : $\mu_1 = \mu, \mu_2 = \mu^2 + \sigma^2 \Rightarrow \hat{\mu} = X, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$ (biased)

• $X \sim \Gamma(\alpha, \beta) : \mu_1 = \alpha/\beta, \mu_2 = \frac{\alpha(\alpha+1)}{\beta^2} \Rightarrow \hat{\beta} = \frac{\hat{\mu}_1}{\hat{\mu}_2 - \hat{\mu}_1^2}, \alpha = \hat{\beta}\hat{\mu}_1$

< 日 > < 回 > < 回 > < 回 > < 回 > <

• $X \sim U(0, \theta) : \mu_1 = \theta \Rightarrow \hat{\theta} = 2\bar{X}$ (could make no sense)

- Pros: easy, consistent, asymptotically unbiased
- Cons: could make no sense, not efficient

 The Method of Moments estimates the sample moments via

$$\hat{\mu}_k := \frac{1}{n} \sum_{i=1}^n X_i^k.$$

• Examples:

- $X \sim Poi(\lambda)$: $\mu_1 = \lambda \Rightarrow \hat{\mu}_1 = \bar{X}$ and $\hat{\lambda} = \bar{X}$
- $X \sim N(\mu, \sigma^2)$: $\mu_1 = \mu, \mu_2 = \mu^2 + \sigma^2 \Rightarrow \hat{\mu} = \bar{X}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$ (biased)
- $X \sim \Gamma(\alpha, \beta) : \mu_1 = \alpha/\beta, \mu_2 = \frac{\alpha(\alpha+1)}{\beta^2} \Rightarrow \hat{\beta} = \frac{\hat{\mu}_1}{\hat{\mu}_2 \hat{\mu}_1^2}, \alpha = \hat{\beta}\hat{\mu}_1$

・ロト ・四ト ・ヨト ・ヨト

- $X \sim U(0, \theta) : \mu_1 = \theta \Rightarrow \hat{\theta} = 2\bar{X}$ (could make no sense)
- Pros: easy, consistent, asymptotically unbiased
- Cons: could make no sense, not efficient

Maximum Likelihood

- $\hat{\theta} = \arg \max lik(\theta) = \arg \max \prod_{i=1}^{n} f(X_i|\theta)$
- $\hat{\theta} = \arg \max I(\theta) = \arg \max \sum_{i=1}^{n} \log f(X_i|\theta)$
- Example: $X \sim Poi(\lambda)$: $P(X = x) = \frac{\lambda^{\chi} e^{-\lambda}}{x!}$

・ロト ・四ト ・ヨト ・ヨト

Maximum Likelihood

•
$$\hat{\theta} = \arg \max lik(\theta) = \arg \max \prod_{i=1}^{n} f(X_i|\theta)$$

• $\hat{\theta} = \arg \max l(\theta) = \arg \max \sum_{i=1}^{n} \log f(X_i|\theta)$

• Example: $X \sim Poi(\lambda)$: $P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$

$$l(\lambda) = \sum_{i=1}^{n} (X_i \log \lambda - \lambda - \log X!)$$
$$= \log \lambda \sum_{i=1}^{n} X_i - n\lambda - \sum_{i=1}^{n} \log X!$$
$$l'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n = 0 \Rightarrow \hat{\lambda} = \bar{X}$$

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Asymptotically unbiased

- Consistent (consistency is the least we can ask for!)
- *Efficient*, which means that it achieves the Cramer-Rao Lower Bound, or that

$$\sqrt{nl(\theta)}(\hat{\theta}_{MLE}-\theta) \rightarrow N(0,1),$$

and $I(\theta) := E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2$ (Fisher information)

・日本

- Asymptotically unbiased
- Consistent (consistency is the least we can ask for!)
- *Efficient*, which means that it achieves the Cramer-Rao Lower Bound, or that

$$\sqrt{nI(\theta)}(\hat{\theta}_{MLE}-\theta) \rightarrow N(0,1),$$

and $I(\theta) := E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2$ (Fisher information)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Likelihood Ratio Test

- Hypothesis: $H_0: \mu = \mu_0; H_A: \mu = \mu_A$
- Test statistic: $\Lambda = \frac{f(X|H_0)}{f(X|H_A)}$ (ratio of likelihoods)
- Rejection region: small value of Λ(X)
- Most powerful for simple null vs. simple alternative
- Example: $N(\mu, \sigma)$ with σ known

•
$$H_0: \mu = \mu_0; H_A: \mu = \mu_A$$

• $\Lambda = \frac{\exp[-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu_0)^2]}{\exp[-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu_A)^2]}$

- Reject for small $\sum_{i=1}^{n} (X_i \mu_A)^2 \sum_{i=1}^{n} (X_i \mu_0)^2 = 2n\bar{X}(\mu_0 \mu_A) + n\mu_A^2 n\mu_0^2.$
- If μ₀ > μ_A, reject for small value of X

 If μ₀ < μ_A, reject for large value of X

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hypothesis: composite null vs. composite alternative

• Test statistic:

$$\Lambda = \frac{\max_{\theta \in H_0} f(X|\theta)}{\max_{\theta \in H_0 \cup H_A} f(X|\theta)} \Rightarrow -2 \log \Lambda \sim \chi^2_{\dim \Omega - \dim \omega_0} \text{ as } n \to \infty$$

Rejection region: small value of Λ(X) or large value of -2 log Λ

• Example:

•
$$H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \sigma^2$$
 is known

•
$$\Lambda(X) = \frac{\exp[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_0)^{-1}]}{\exp[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \bar{X})^2]}$$

Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

<ロ> <同> <同> < 同> < 同> < 同> < □> <

르

- Hypothesis: composite null vs. composite alternative
- Test statistic: $\Lambda = \frac{\max_{\theta \in H_0} f(X|\theta)}{\max_{\theta \in H_0 \cup H_A} f(X|\theta)} \Rightarrow -2 \log \Lambda \sim \chi^2_{\dim \Omega - \dim \omega_0} \text{ as } n \to \infty$
- Rejection region: small value of Λ(X) or large value of -2 log Λ
- Example:

•
$$H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \sigma^2$$
 is known

•
$$\Lambda(X) = \frac{\exp[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_0)^2]}{\exp[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \bar{X})^2]}$$

Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

- Hypothesis: composite null vs. composite alternative
- Test statistic: $\Lambda = \frac{\max_{\theta \in H_0} f(X|\theta)}{\max_{\theta \in H_0 \cup H_A} f(X|\theta)} \Rightarrow -2 \log \Lambda \sim \chi^2_{\dim \Omega - \dim \omega_0} \text{ as } n \to \infty$
- Rejection region: small value of Λ(X) or large value of -2 log Λ
- Example:

•
$$H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \sigma^2$$
 is known

•
$$\Lambda(X) = \frac{\exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_0)\right]}{\exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \bar{X})^2\right]}$$

Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Hypothesis: composite null vs. composite alternative
- Test statistic: $\Lambda = \frac{\max_{\theta \in H_0} f(X|\theta)}{\max_{\theta \in H_0 \cup H_A} f(X|\theta)} \Rightarrow -2 \log \Lambda \sim \chi^2_{\dim \Omega - \dim \omega_0} \text{ as } n \to \infty$
- Rejection region: small value of Λ(X) or large value of -2 log Λ
- Example:
 - $H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \sigma^2$ is known $\exp[-\frac{1}{2}\sum_{i=1}^{n} (X_i - \mu_0)^2]$
 - $\Lambda(X) = \frac{\exp[-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i \mu_0)^2]}{\exp[-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i \bar{X})^2]}$
 - Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

・ロト ・四ト ・ヨト ・ヨト

Summary

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

ヘロマ ヘロマ ヘロマ ヘ

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

< **□** > < **□** >

Outline

4 Linear Regression

- Simple Linear Regression
- Multiple Linear Regression
- Variable Selection

Figure: Source: https://makeameme.org/meme/when-you-advertise-f81897f53a

イロト イヨト イヨト イヨト

What is linear regression?

▲ロト▲御ト▲車ト▲車ト 車 のへで

Figure: Source: https://en.wikipedia.org/wiki/Linear regression/media/File:Linear regression.svg

ヘロマ ヘロマ ヘロマ ヘ

æ

Model

• Write $y = \beta_1 x + \beta_0 + \varepsilon$

- Assume $\varepsilon \sim N(0, \sigma^2)$
- Want to estimate $\hat{\beta}_1$ and $\hat{\beta}_0$
- Closed form solution under this model:

$$egin{aligned} \hat{eta}_1 &= rac{S_{XY}}{S_{XX}}, \qquad \hat{eta}_0 &= ar{y} - bar{x}, \ S_{XY} &= \sum (x_i - ar{x})(y_i - ar{y}), \qquad S_{XX} &= \sum (x_i - ar{x})^2 \end{aligned}$$

<ロト < 部 > < き > < き > .

Model

- Write $y = \beta_1 x + \beta_0 + \varepsilon$
- Assume $\varepsilon \sim N(0, \sigma^2)$
- Want to estimate $\hat{\beta}_1$ and $\hat{\beta}_0$
- Closed form solution under this model:

$$egin{aligned} &\hat{eta}_1 = rac{S_{XY}}{S_{XX}}, & \hat{eta}_0 = ar{y} - bar{x}, \ &S_{XY} = \sum (x_i - ar{x})(y_i - ar{y}), & S_{XX} = \sum (x_i - ar{x})^2 \end{aligned}$$

イロト イヨト イヨト イヨト

Model

- Write $y = \beta_1 x + \beta_0 + \varepsilon$
- Assume ε ~ N(0, σ²)
- Want to estimate $\hat{\beta}_1$ and $\hat{\beta}_0$
- Closed form solution under this model:

$$egin{aligned} \hat{eta}_1 &= rac{S_{xy}}{S_{xx}}, \qquad \hat{eta}_0 &= ar{y} - bar{x}, \ S_{xy} &= \sum (x_i - ar{x})(y_i - ar{y}), \qquad S_{xx} &= \sum (x_i - ar{x})^2 \end{aligned}$$

<ロ> <同> <同> < 同> < 同> < 同> 、

Ξ.

Hypothesis Testing

Can test whether $\beta_1 = 0$ since we have the exact distributions under this model:

$$\begin{aligned} \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sigma^2 / S_{xx}}} &\sim N(0, 1), \qquad \frac{\hat{\beta}_1 - \beta_1}{\sqrt{MSE/S_{xx}}} \sim t_{n-2} \\ \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\sigma^2 \ \overline{x^2} / S_{xx}}} &\sim N(0, 1), \qquad \frac{\hat{\beta}_0 - \beta_0}{\sqrt{MSE \ \overline{x^2} / S_{xx}}} \sim t_{n-2} \\ \frac{\hat{y} - (\beta_0 + \beta_1 x^*)}{\sqrt{MSE(\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}})}} &\sim t_{n-2} \end{aligned}$$
- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

Model

• $Y = \mathbf{X}\beta + \varepsilon$ where $Y \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^{d}$ $\mathbb{E}(\varepsilon) = 0, \mathbb{E}(\varepsilon \varepsilon^{\top}) = \sigma^{2} I_{d}$ Gauss-Markov Assumptions

- By convention, we attach a column of all ones to the matrix
 X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^d$ given the observations **X** and the response variables *Y*

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Model

• $Y = \mathbf{X}\beta + \varepsilon$ where

$$Y \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^{d}$$

 $\mathbb{E}(\varepsilon) = 0, \mathbb{E}(\varepsilon \varepsilon^{\top}) = \sigma^{2} I_{d}$ Gauss-Markov Assumptions

- By convention, we attach a column of all ones to the matrix
 X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^d$ given the observations **X** and the response variables *Y*

ヘロマ ヘロマ ヘロマ ヘ

Model

• $Y = \mathbf{X}\beta + \varepsilon$ where

$$Y \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^{d}$$

 $\mathbb{E}(\varepsilon) = 0, \mathbb{E}(\varepsilon \varepsilon^{\top}) = \sigma^{2} I_{d}$ Gauss-Markov Assumptions

- By convention, we attach a column of all ones to the matrix
 X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^d$ given the observations **X** and the response variables *Y*

・ ロ ト ・ 日 ト ・ 回 ト ・

$$\begin{aligned} \arg\min_{\beta \in \mathbb{R}^{d}} \|\mathbf{X}\beta - Y\|_{2} &= \arg\min_{\beta \in \mathbb{R}^{d}} \frac{1}{2} \|\mathbf{X}\beta - Y\|_{2}^{2} \\ &= \arg\min_{\beta \in \mathbb{R}^{d}} \frac{1}{2} \langle \mathbf{X}\beta - Y, \mathbf{X}\beta - Y \rangle \\ &= \arg\min_{\beta \in \mathbb{R}^{d}} \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle + \langle Y, Y \rangle \\ &= \arg\min_{\beta \in \mathbb{R}^{d}} \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle \end{aligned}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ● Ξ = • の < @

Define $f : \mathbb{R}^d \to \mathbb{R}$ via $f(\beta) = \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle$. We will take the derivative and set it equal to zero.

$$\nabla f = \frac{d}{d\beta} \frac{1}{2} \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta - \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}$$
$$\implies \nabla f = \mathbf{X}^{\top} \mathbf{X} \beta - \mathbf{X}^{\top} Y$$
$$\implies \hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} Y$$

provided $\mathbf{X}^{\top}\mathbf{X}$ is invertible, which happens as long as there is no *collinearity* (i.e. no column of **X** is a linear combination of other columns)

Define $f : \mathbb{R}^d \to \mathbb{R}$ via $f(\beta) = \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle$. We will take the derivative and set it equal to zero.

$$\nabla f = \frac{d}{d\beta} \frac{1}{2} \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta - \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}$$
$$\implies \nabla f = \mathbf{X}^{\top} \mathbf{X} \beta - \mathbf{X}^{\top} \mathbf{Y}$$
$$\implies \hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

provided $\mathbf{X}^{\top}\mathbf{X}$ is invertible, which happens as long as there is no *collinearity* (i.e. no column of **X** is a linear combination of other columns)

OLS Estimator is BLUE

We have that

$$\mathbb{E}(\hat{\beta}) = \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y \right)$$
$$= \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\beta + \varepsilon) \right)$$
$$= \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\beta + (\mathbf{X}^{\top}\mathbf{X})^{-1}\varepsilon \right)$$
$$= \beta + \mathbb{E}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}\varepsilon)$$
$$= \beta$$

so $\hat{\beta}$ is *unbiased*.

3

OLS Estimator is BLUE

Hence, the covariance
$$\mathbb{E}\Big[(\hat{eta}-eta)(\hat{eta}-eta)^{ op}\Big]$$
 satisfies

$$\begin{split} & \mathbb{E}\Big[\Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y - \beta \Big) \Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y - \beta \Big)^{\top} \Big] \\ &= \mathbb{E}\Big[\Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\beta + \varepsilon) - \beta \Big) \Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\beta + \varepsilon) - \beta \Big)^{\top} \Big] \\ &= \mathbb{E}\Big[\Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\varepsilon + \beta - \beta \Big) \Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\varepsilon + \beta - \beta \Big)^{\top} \Big] \\ &= \mathbb{E}\Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\varepsilon\varepsilon^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} \Big) \\ &= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbb{E}\Big(\varepsilon\varepsilon^{\top}\Big)\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} = \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}. \end{split}$$

æ

Let $\tilde{\beta}$ be any other linear unbiased estimator, where linear means $\tilde{\beta} = \mathbf{H} \mathbf{Y}$ for some **H**. Since $\tilde{\beta}$ is unbiased,

$$\beta = \mathbb{E}(\tilde{\beta}) = \mathbb{E}(\mathsf{H}Y) = \mathsf{H}\mathbb{E}(\mathsf{X}\beta + \varepsilon) = \mathsf{H}\mathsf{X}\beta \implies \mathsf{H}\mathsf{X} = I_d.$$

We know that $\left[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \right]\mathbf{X} = I_d$, so write $\mathbf{H} := (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{C},$

for **C** satisfying $\mathbf{CX} = \mathbf{0}$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Let $\tilde{\beta}$ be any other linear unbiased estimator, where linear means $\tilde{\beta} = \mathbf{H} \mathbf{Y}$ for some **H**. Since $\tilde{\beta}$ is unbiased,

$$\beta = \mathbb{E}(\tilde{\beta}) = \mathbb{E}(\mathsf{H}Y) = \mathsf{H}\mathbb{E}(\mathsf{X}\beta + \varepsilon) = \mathsf{H}\mathsf{X}\beta \implies \mathsf{H}\mathsf{X} = I_d.$$

We know that
$$\left[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \right] \mathbf{X} = I_d$$
, so write
$$\mathbf{H} := (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{C},$$

for **C** satisfying $\mathbf{CX} = \mathbf{0}$.

▲ □ ▶ ▲ □ ▶

OLS Estimator is BLUE

Then since

$$\operatorname{Cov}(Y) = \operatorname{Cov}(X\beta + \varepsilon) = \operatorname{Cov}(\varepsilon) = \sigma^2 I_d,$$

we see

$$\begin{aligned} \operatorname{Cov}(\widetilde{\beta}) &= \operatorname{Cov}(\mathbf{H}Y) = \mathbf{H}\operatorname{Cov}(Y)\mathbf{H}^{\top} = \sigma^{2}\mathbf{H}\mathbf{H}^{\top} \\ &= \sigma^{2}\Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{C}\Big)\Big((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} + \mathbf{C}\Big)^{\top} \\ &= \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} \\ &\quad + \mathbf{C}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} + (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{C}^{\top} + \mathbf{C}\mathbf{C}^{\top} \\ &= \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1} + \sigma^{2}\mathbf{C}\mathbf{C}^{\top} \end{aligned}$$

since $\mathbf{CX} = \mathbf{0}$.

■ のへで

- So we have shown for any other estimator β̃ that is a linear function of Y and is unbiased that its variance is the variance of β̂ plus the matrix σ²CC[⊤]
- In particular, σ²CC[⊤] is a positive semidefinite matrix, meaning the variance of β̃ exceeds that of β̂ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

- So we have shown for any other estimator β̃ that is a linear function of Y and is unbiased that its variance is the variance of β̂ plus the matrix σ²CC[⊤]
- In particular, σ²CC[⊤] is a positive semidefinite matrix, meaning the variance of β̃ exceeds that of β̂ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

- So we have shown for any other estimator β̃ that is a linear function of Y and is unbiased that its variance is the variance of β̂ plus the matrix σ²CC[⊤]
- In particular, σ²CC[⊤] is a positive semidefinite matrix, meaning the variance of β̃ exceeds that of β̂ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

#10yearchallenge

Figure: Source: https://medium.com/nybles/understanding-machine-learning-through-memes-4580b67527bf

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

- Some regression problems have a very large number of predictors *d* ≥ *n*, in which case classical results may not hold
- One way to eliminate this issue is to perform *variable selection*
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

- Some regression problems have a very large number of predictors *d* ≥ *n*, in which case classical results may not hold
- One way to eliminate this issue is to perform *variable selection*
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Some regression problems have a very large number of predictors *d* ≥ *n*, in which case classical results may not hold
- One way to eliminate this issue is to perform *variable selection*
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Some regression problems have a very large number of predictors *d* ≥ *n*, in which case classical results may not hold
- One way to eliminate this issue is to perform *variable selection*
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Initiate $V := \emptyset$
- 2 for each variable $v \notin V$:
 - **1** Run a model with all the variables in V and the variable v_i
 - 2 keep track of the AIC/BIC
- Sind the variable v^* that maximizes AIC, and set $V := V \cup v^*$.
- go back to step 2

< ロ > < 団 > < 豆 > < 豆 > <</p>

э.

- Instead of minimizing the objective ||**X**β Y||²₂, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

- Instead of minimizing the objective ||**X**β Y||²₂, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

・ロト ・聞 ト ・ ヨト ・ ヨト

- Instead of minimizing the objective ||**X**β Y||²₂, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

- Instead of minimizing the objective ||**X**β Y||²₂, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

< 日 > < 回 > < 回 > < 回 > < 回 > <

Outline

- Supervised Learning
- Unsupervised Learning

イロト イヨト イヨト イヨト

크

Figure: Source: https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

▲ロト▲御ト▲恵ト▲恵ト 恵 めんぐ

Broadly speaking, there are two areas of machine learning

- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction
- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

イロト イヨト イヨト イヨト

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

Machine Learning can be closer to engineering or closer to statistics

- I believe machine learning should be *principled*, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

イロト イヨト イヨト イヨト

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be *principled*, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be *principled*, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be *principled*, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be *principled*, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Figure: Source: https://xkcd.com/1838/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coursework

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

< D > < B > < E > <</p>

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

・ロト ・日 ・ ・ ヨ ・ ・

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

イロト イ理ト イヨト イヨト

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

<ロ> <同> <同> < 同> < 同> < 同> < □> <

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

<ロ> <同> <同> < 同> < 同> < 同> < □> <

Figure: Source: https://pythonhosted.org/PyQt-Fit/NonParam_tut.html

æ

- Idea is we have covariates X (as in the linear regression case), and seek to discover Y_i = f(X_i) for some function f
- Sometimes *f* is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes *f* is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of *f*; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the statistical properties of *î*
 - Machine Learning studies how to optimize the objective function for \hat{f}

- Idea is we have covariates X (as in the linear regression case), and seek to discover Y_i = f(X_i) for some function f
- Sometimes *f* is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes *f* is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of *f*; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the *statistical* properties of *î*
 - Machine Learning studies how to optimize the objective function for \hat{f}

<ロト <回 > < 回 > < 回 > .

- Idea is we have covariates X (as in the linear regression case), and seek to discover Y_i = f(X_i) for some function f
- Sometimes *f* is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes *f* is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of *f*; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the *statistical* properties of *î*
 - Machine Learning studies how to optimize the objective function for \hat{f}

<ロ> <同> <同> < 同> < 同> < 同> 、

- Idea is we have covariates X (as in the linear regression case), and seek to discover Y_i = f(X_i) for some function f
- Sometimes *f* is linear $(f(X_i) = X_i^\top \beta)$
- Sometimes *f* is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of *f*; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the statistical properties of *î*
 - Machine Learning studies how to optimize the objective function for \hat{f}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Idea is we have covariates X (as in the linear regression case), and seek to discover Y_i = f(X_i) for some function f
- Sometimes *f* is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes *f* is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of *f*; machine learning worries about how to actually do the estimation
- Example:
 - *f* is a smooth function, and we minimize some objective function to find our estimator *f* (nonparametric)
 - Statistics studies the *statistical* properties of \hat{f}
 - Machine Learning studies how to optimize the objective function for \hat{f}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Idea is we have covariates X (as in the linear regression case), and seek to discover Y_i = f(X_i) for some function f
- Sometimes *f* is linear $(f(X_i) = X_i^\top \beta)$
- Sometimes *f* is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of *f*; machine learning worries about how to actually do the estimation
- Example:
 - *f* is a smooth function, and we minimize some objective function to find our estimator *f* (nonparametric)
 - Statistics studies the *statistical* properties of \hat{f}
 - Machine Learning studies how to optimize the objective function for \hat{f}

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Typically study

$$\inf_{f\in\mathcal{F}_0}\sum_{i=1}^n\|f(X_i)-Y_i\|_\eta$$

for η some norm and \mathcal{F} some (computable) function class

• Often want to minimize MSE ($\eta = 2$)

• Examples of ML algorithms to find *f* above:

- Random Forests
- Neural Networks
- Linear Regression
- Nonparametric Regression (splines and things)
- More involved classes of functions

< 日 > < 回 > < 回 > < 回 > < 回 > <

Typically study

$$\inf_{f\in\mathcal{F}_0}\sum_{i=1}^n\|f(X_i)-Y_i\|_\eta$$

for η some norm and \mathcal{F} some (computable) function class

- Often want to minimize MSE ($\eta = 2$)
- Examples of ML algorithms to find *f* above:
 - Random Forests
 - Neural Networks
 - Linear Regression
 - Nonparametric Regression (splines and things)
 - More involved classes of functions

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Typically study

$$\inf_{f\in\mathcal{F}_0}\sum_{i=1}^n\|f(X_i)-Y_i\|_\eta$$

for η some norm and \mathcal{F} some (computable) function class

- Often want to minimize MSE ($\eta = 2$)
- Examples of ML algorithms to find *f* above:
 - Random Forests
 - Neural Networks
 - Linear Regression
 - Nonparametric Regression (splines and things)
 - More involved classes of functions

Classification

• Response variable $Y_i \in \{1, ..., K\}$ for some K

- Similar to above, only the norm to minimize is different
- Examples include
 - *K*-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

イロト イヨト イヨト イヨト

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - *K*-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

イロト イヨト イヨト イヨト

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - K-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks

• Similar ideas to Regression

・ロト ・四ト ・ヨト

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - *K*-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use *gradient descent* to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use *gradient descent* to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use *gradient descent* to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use *gradient descent* to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal *f*
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use *gradient descent* to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal *f*
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use *gradient descent* to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal *f*
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

Figure: Source: https://www.datasciencecentral.com/profiles/blogs/alternatives-to-thegradient-descent-algorithm

<ロト < 回ト < 回ト

문 > 문

Machine learning behind the scenes

Figure: Source:

https://me.me/i/machine-learning-gradient-descent-machine-learning-machine-learning-behind-the-ea8fe9fc64054eda89232d7ffc9ba60e

(本部) (本語) (本語) (語)

• Want to uncover some hidden structure in the data

- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

・ロト ・四ト ・ヨト

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

Suppose $\mathbb{E}(X) = 0$ and $\mathbb{E}(XX^{\top}) = \Sigma_0 + \sigma^2 I_d$, where Σ_0 is rank r < d. Then

Idea is that when $d_r - d_{r+1}$ is sufficiently large then

 $\hat{\boldsymbol{U}}\approx\boldsymbol{U}\qquad \hat{\boldsymbol{D}}\approx\boldsymbol{D}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Figure: Source: https://towardsdatascience.com/pca-is-not-feature-selection-3344fb764ae6

< □ > < □ > < □ > < □ >

크

Manifold Learning

• Assume we observe $X_i \in \mathbb{R}^D$, where *D* is very large

- Idea is X_i are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^D$, where \mathcal{M} is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where *D* is very large
- Idea is X_i are noisy observations of a manifold M ⊂ ℝ^D, where M is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where *D* is very large
- Idea is X_i are noisy observations of a manifold M ⊂ ℝ^D, where M is of dimension d < D
- Example: X_i are from the unit sphere in ℝ^D, then M is of dimension d = D − 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where *D* is very large
- Idea is X_i are noisy observations of a manifold M ⊂ ℝ^D, where M is of dimension d < D
- Example: X_i are from the unit sphere in ℝ^D, then M is of dimension d = D − 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where *D* is very large
- Idea is X_i are noisy observations of a manifold M ⊂ ℝ^D, where M is of dimension d < D
- Example: X_i are from the unit sphere in ℝ^D, then M is of dimension d = D − 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

Figure: Source: https://www.semanticscholar.org/paper/Algorithmsfor-manifold-learning-

Cayton/100dcf6aa83ac559c83518c8a41676b1a3a55fc0/figure/0

- Clustering assumes data come from a mixture and seeks to estimate the clusters
- Examples:
 - K-Means (uses only means)
 - Expectation Maximization Algorithm (Mixtures of Gaussians)
 - Spectral Clustering -clusters using eigenvectors of a matrix

- Clustering assumes data come from a mixture and seeks to estimate the clusters
- Examples:
 - K-Means (uses only means)
 - Expectation Maximization Algorithm (Mixtures of Gaussians)
 - Spectral Clustering –clusters using eigenvectors of a matrix

Figure: Source: https://www.geeksforgeeks.org/clustering-in-machine-learning/

크

6 Nonparametric and High-Dimensional Statistics

- Nonparametric Statistics
- High-Dimensional Statistics

イロト イヨト イヨト イヨト

æ

• Recall we had a family of distributions \mathcal{F}

- Parametric required that $\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function *f* entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function *f* entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function *f* entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function *f* entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

・ロト ・ 四 ト ・ 回 ト ・

- $\bullet\,$ Recall we had a family of distributions ${\cal F}\,$
- Parametric required that $\mathcal{F} = \{f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function *f* entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

High-Dimensional Issues

Let $X_1, ..., X_n$ be iid such that $\mathbb{E}X = \mu \in \mathbb{R}^d$ with covariance $\sigma^2 I_d$.

$$\mathbb{P}\Big(\|\bar{X}-\mu\| > \varepsilon\Big) = \mathbb{P}\Big(\|\bar{X}-\mu\|^2 > \varepsilon^2\Big) \le \frac{\mathbb{E}\Big(\sum_{j=1}^d \left[\bar{X}(j)-\mu(j)\right]^2\Big)}{\varepsilon^2}$$
$$= \frac{d\mathbb{E}(\bar{X}(j)-\mu_j)^2}{\varepsilon^2} = \frac{d\sigma^2}{\varepsilon^2}$$

This shows that

$$\mathbb{P}\bigg(\|\bar{X}-\mu\| > \sigma\sqrt{nd}\bigg) \leq \frac{1}{n}.$$

When *d* is very small with respect to *n*, then this is quite useful. But if $\sigma = 1$ and $d \approx n$, then this bound is uninformative!

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

High-Dimensional Issues

Let $X_1, ..., X_n$ be iid such that $\mathbb{E}X = \mu \in \mathbb{R}^d$ with covariance $\sigma^2 I_d$.

$$\mathbb{P}\Big(\|\bar{X}-\mu\| > \varepsilon\Big) = \mathbb{P}\Big(\|\bar{X}-\mu\|^2 > \varepsilon^2\Big) \le \frac{\mathbb{E}\Big(\sum_{j=1}^d \left[\bar{X}(j)-\mu(j)\right]^2\Big)}{\varepsilon^2}$$
$$= \frac{d\mathbb{E}(\bar{X}(j)-\mu_j)^2}{\varepsilon^2} = \frac{d\sigma^2}{\varepsilon^2}$$

This shows that

$$\mathbb{P}\Big(\|\bar{\boldsymbol{X}}-\boldsymbol{\mu}\| > \sigma\sqrt{nd}\Big) \leq \frac{1}{n}.$$

When *d* is very small with respect to *n*, then this is quite useful. But if $\sigma = 1$ and $d \approx n$, then this bound is uninformative!

・ロト ・四ト ・ヨト ・ヨト

High-Dimensional Issues

Let $X_1, ..., X_n$ be iid such that $\mathbb{E}X = \mu \in \mathbb{R}^d$ with covariance $\sigma^2 I_d$.

$$\mathbb{P}\Big(\|\bar{X}-\mu\| > \varepsilon\Big) = \mathbb{P}\Big(\|\bar{X}-\mu\|^2 > \varepsilon^2\Big) \le \frac{\mathbb{E}\Big(\sum_{j=1}^d \left[\bar{X}(j)-\mu(j)\right]^2\Big)}{\varepsilon^2}$$
$$= \frac{d\mathbb{E}(\bar{X}(j)-\mu_j)^2}{\varepsilon^2} = \frac{d\sigma^2}{\varepsilon^2}$$

This shows that

$$\mathbb{P}\Big(\|\bar{\boldsymbol{X}}-\boldsymbol{\mu}\| > \sigma\sqrt{nd}\Big) \leq \frac{1}{n}.$$

When *d* is very small with respect to *n*, then this is quite useful. But if $\sigma = 1$ and $d \approx n$, then this bound is uninformative!

▲□ ▶ ▲ □ ▶ ▲ □ ▶ .

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
 - Fixed dimension, fixed *n* results (Wainwright, 2019; Vershynin, 2018)
 - Asymptotics as $n, d \rightarrow \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

・ロト ・四ト ・ヨト

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
 - Fixed dimension, fixed *n* results (Wainwright, 2019; Vershynin, 2018)
 - Asymptotics as $n, d \rightarrow \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

・ロト ・ 日 ・ ・ ヨ ・

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
 - Fixed dimension, fixed *n* results (Wainwright, 2019; Vershynin, 2018)
 - Asymptotics as $n, d \rightarrow \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

・ロト ・四ト ・ヨト

I am available for questions and Zoom if you have further questions and would like to discuss statistics or anything!

- P.J. Bickel and K.A. Doksum. *Mathematical Statistics: Basic Ideas and Selected Topics*. Number v. 1 in Mathematical Statistics: Basic Ideas and Selected Topics. Pearson Prentice Hall, 2007. ISBN 9780132306379.
- P.J. Bickel, C.A.J. Klaassen, Y. Ritov, and J.A. Wellner. *Efficient* and Adaptive Estimation for Semiparametric Models. Johns Hopkins series in the mathematical sciences. Springer New York, 1998. ISBN 9780387984735.
- A.B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Series in Statistics. Springer New York, 2008. ISBN 9780387790527.
- A.W. van der Vaart. *Asymptotic Statistics*. Asymptotic Statistics. Cambridge University Press, 2000. ISBN 9780521784504.

< □ > < □ > < □ > < □ >
Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi: 10.1017/9781108231596.

Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/9781108627771.