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Samples and Population

We have a population distribution f0 and a model
F = {f : f ∈ F}
Goal: extract some information about f0 from F .
Examples:

Population follows a N(µ0, σ
2
0) distribution, and from the set

F := {N(µ, σ2) : µ ∈ R, σ2 > 0}
Population exhibits some probability p0 of having an
attribute (e.g. having COVID-19), and consider
F = Binomial(n,p),p > 0.
Population follows some continuous distribution f0 and we
set F = { all continuous distributions}.
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Parametric Families

If the family satisfies F := {fθ : θ ∈ Rd}, then we say it is
parametric
Examples of parametric families:

Bernoulli: X ∼ Ber(p),P(X = 1) = p
Binomial: X ∼ Bin(n,p),P(X = k) =

(n
k

)
pk (1− p)n−k ,

Bin(n,p) =
∑n

i=1 Ber(p)

Normal: X ∼ N(µ, σ2), f (x) = 1√
2πσ

e−
(x−µ)2

2σ2

Bin(n,p) ≈ N(np,npq), N(µ,σ2)−µ
σ = N(0,1)

Chi-square: X ∼ χ2
ν , χ2

ν =
∑ν

i=1 N(0,1)2

t-distribution: X ∼ tν , tν = N(0,1)√
χ2
ν/ν

, t∞ = N(0,1), t0 =

Cauchy (undefined mean and variance)
F-distribution X ∼ Fn,m, Fn,m =

χ2
n/n

χm/m , t
2
ν = F1,ν

Others: Exponential, Poisson, Gamma, Beta, Negative
Binomial, ...
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Nonparametric Families

If the family F is infinite-dimensional, we (typically) say it is
nonparametric (Tsybakov, 2008)
Semiparametric out-of-scope (Bickel et al., 1998)
Examples of nonparametric families

F := {f : Ef |X |2 <∞}; i.e. the set of distributions with finite
second moment
F := {f : f is a continuous density}
F := {f : f is infinitely differentiable}
F := {f : f has the property that
log f (tx + (1− t)y) ≥ t log f (x) + (1− t) log f (y)
(log-concave distributions see Samworth)
F := {f : f is has continuous derivatives up to order r}
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Main Ideas

We observe a sample X1, ...,Xn iid from f0.
Assuming that there is a true parameter θ (e.g. the mean,
the variance, etc.), can we use our data to study the true
distribution? (Frequentist method). We can:

estimate θ,
perform a hypothesis test,
or find a confidence interval about the true parameter.

Always pay attention to assumptions! In many cases,
assumptions do not hold, but they make our lives easier.
If we know exact distributions, we can perform inference
exactly
Otherwise, we study asymptotics (van der Vaart, 2000)
Often much easier to study asymptotic results than
finite-sample results (Bickel and Doksum, 2007)
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A note on prerequisites

Much of this material is covered in an introductory statistics
course
However some of it (e.g. R code, material at the end) may
be new
My hope is to leave you with a basic idea of both the
mathematics and the philosophy of statistical inference, so
that even new material is not difficult
553.630 covers statistical theory at the upper
undergraduate/graduate level in primarily parametric
settings with an emphasis on explicit calculations
553.730 covers statistical theory at the graduate level with
an emphasis on proving results for parametric families
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Outline

2 Exact Parametric Methods
Estimation
One-Sample Testing
Two-Sample Testing
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Exact Parametric Methods

In some cases, if we assume the population has a distribution,
we can explicitly characterize the finite-sample distribution

Figure: Source: https://www.pinterest.com/pin/246853623302262497/
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Estimation

Data: Xi ∼ N(µ, σ2)

Estimator: µ̂ = X̄

Distribution: X̄−µ
s/
√

n ∼ tn−1 (“proof": X̄−µ
s/
√

n =
X̄−µ
σ/
√

n√
s2/σ2

)

C.I.: X̄ ± tn−1(α/2) s√
n

We know the exact distribution when Xi ∼ N(µ, σ2).
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One-Sample Testing

If Xi ∼ N(µ, σ2), we want to test whether the mean is equal
to µ0

Form the hypotheses

H0 : µ = µ0

HA : µ 6= µ0

Under the null µ = µ0, the data Xi ∼ N(µ0, σ
2)

Form the test statistic T = X̄−µ0
s/
√

n , where s is the sample
standard deviation
Reject at level α if |T | > tn−1(α/2)
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Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-
tailed-two-tailed-hypothesis-tests/
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Two-Sample Testing

Xi ∼ N(µX , σ
2
X ), Yi ∼ N(µY , σ

2
Y )

Want to test µX = µY

Form the hypothesis:

H0 : µX = µY

HA : µx 6= µY

Test statistic: T = X̄−Ȳ√
s2
p
n +

s2
p

m

∼ tn−1, where

s2
p :=

(n − 1)s2
X + (m − 1)s2

Y
n + m − 2

Rejection region: |T | > tn−1(α/2)
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Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-
tailed-two-tailed-hypothesis-tests/
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Main Ideas

Know exact distribution of data
Calculate its exact distribution under the null H0 (both
cases, we had normal data, and had to estimate σ)
Test whether we would observe the value of the test
statistic under the null hypothesis
Could do for other parameters of interest (σ2, multivariate
means, covariances)
Duality between confidence interval and Hypothesis testing
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Figure: Source:
https://stats.stackexchange.com/questions/220434/hypothesis-
testing-why-center-the-sampling-distribution-on-h0
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Outline

3 Large-Sample Parametric Methods
Central Limit Theorem
Estimation and Testing for Proportions
Estimation and Testing for More General Parametric
Families
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Large-Sample Concepts

In many cases, we do not know exact distribution of the
data
Nevertheless, with enough samples, we can use the
asymptotic results from probability theory, namely the
Central Limit Theorem
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Central Limit Theorem

X1, ...,Xn ∼ F iid
Define

Sn :=
n∑

i=1

Xi

Then as n→∞, we have that

Sn − nµ
σ/
√

n
→ N(0,1)

Idea for inference: if we can write a test statistic in terms of
iid summands, then we can use the CLT to perform
hypothesis tests

Joshua Agterberg Statistics Review



Central Limit Theorem

X1, ...,Xn ∼ F iid
Define

Sn :=
n∑

i=1

Xi

Then as n→∞, we have that

Sn − nµ
σ/
√

n
→ N(0,1)

Idea for inference: if we can write a test statistic in terms of
iid summands, then we can use the CLT to perform
hypothesis tests

Joshua Agterberg Statistics Review



Central Limit Theorem

X1, ...,Xn ∼ F iid
Define

Sn :=
n∑

i=1

Xi

Then as n→∞, we have that

Sn − nµ
σ/
√

n
→ N(0,1)

Idea for inference: if we can write a test statistic in terms of
iid summands, then we can use the CLT to perform
hypothesis tests

Joshua Agterberg Statistics Review



Figure: Source: http://www.marketexpress.in/2016/11/central-limit-
theorem-normal-distribution.html
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Estimation of Proportions Using the CLT

For testing proportions (presence or absence of a
characteristic), for a fixed sample of size n the distribution
is Binom(n,p), where p = P(Xi = 1) = P(person i has the
characteristic)
Want to either estimate p or perform Hypothesis test
Example

H0 : P(drug X works) = .8

Observation: for large n, by CLT

Sn − np
σ/
√

n
≈ N(0,1),

where Sn =
∑n

i=1 Xi .
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Figure: Source: https://blogs.sas.com/content/iml/2012/03/14/the-
normal-approximation-to-the-binomial-distribution-how-the-quantiles-
compare.html
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One-Sample Testing for Proportions using the CLT

Hypothesis: H0 : p = p0 vs. HA : p 6= p0

Test statistics: Z = p̂−p0√
p0(1−p0)/n

∼ N(0,1)

Rejection region: |Z | > z(α/2)
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Two-Sample Testing for Proportions using the CLT

Hypothesis: H0 : pX − pY = D0 vs. HA : pX − pY 6= D0

Test statistics: Z = p̂X−p̂Y−D0√
pX (1−pX )

n +
pY (1−pY )

m

∼ N(0,1)

Rejection region: |Z | > z(α/2)
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Other Tests

Can perform tests for variance, goodness-of-fit, etc., using
CLT
Idea is if somehow can write test statistic T ≈ Sn−nµ

s/
√

n , then
it is approximately N(0,1).
Other distributions that arise from asymptotics:

ξ2 distribution (e.g. T 2 ≈ N(0,1)2 ≈ ξ2(1)
F is a ratio of ξ2, so comes when analyzing variance

See notes for more details on other tests
Type I error: α, and Type II error = P(error if H0 is false).
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Type I error: α, and Type II error = P(error if H0 is false).
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Consistency

Suppose X1, ...,Xn are iid fθ, for θ ∈ Θ

Inference on θ is a bit more complicated than just applying
the CLT
Want an estimator θ̂ that uses the data such that θ̂n → θ in
probability, where this means

lim
n→∞

P(|θ̂ − θ| > ε) = 0

for all ε > 0.
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Figure: Source: https://www.facebook.com/StatisticalMemes/
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Consistency Example

Example: X1, ...,Xn ∼ U(0, θ), θ > 0.
Set θ̂ := max1≤i≤n Xi . Then

P(|θ̂ − θ| > ε) = P(θ − θ̂ > ε) + P(θ̂ − θ > ε) (1)

= P(θ − θ̂ > ε) + 0 (2)

= P(θ − ε > θ̂) = P( max
1≤i≤n

Xi < θ − ε) (3)

= P(X1 < θ − ε, ...,Xn < θ − ε) (4)

=

(
P(X1 < θ − ε)

)n

=

(
θ − ε
θ

)n

(5)

Where (3) is since θ̂ < θ always, and by definition, (4) is
because max Xi < c if and only if all Xi < c, (5) is because the
Xi ’s are iid and the CDF of the uniform distribution.
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Consistency Example

Hence, we see

P|θ̂ − θ| > ε) =

(
θ − ε
θ

)n

which tends to zero for all ε > 0 since the term in the
parentheses is less than 1.
So for X1, ...,Xn ∼ U(0, θ), θ̂ = maxi Xi is consistent for θ.
But

E(θ̂) =
n

n + 1
θ (check!)

which does not equal θ! (it is biased)
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Bias-Variance Tradeoff

Define the bias: E(θ̂)− θ. Say θ̂ is unbiased if bias = 0
Define the Mean-Squared Error (MSE):

E
[

(θ̂ − θ)2
]

= E
[

(θ̂ − Eθ̂ + Eθ̂ − θ)2
]

= E
[

(θ̂ − Eθ̂)2 + (Eθ̂ − θ)2 + 2
(
(θ̂ − Eθ̂)(Eθ̂ − θ)

)]
= E

[
(θ̂ − Eθ̂)2

]
+ (Eθ̂ − θ)2 + 2E

[
(θ̂ − Eθ̂)(Eθ̂ − θ)

]
= E

[
(θ̂ − Eθ̂)2

]
+ (Eθ̂ − θ)2

= Variance(θ̂) + Bias2
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Example Continued

For X1, ...,Xn ∼ U(0, θ), we saw Eθ̂ = n
n+1 ]θ, which is

biased
The variance is n

(n+1)2(n+2)
θ2 (do this!)

So the MSE is:

Variance + Bias2 =
n

(n + 1)2(n + 2)
θ2 +

(
1

n + 1

)2

θ2

Note that as n→∞, MSE → 0.
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Method of Moments

The Method of Moments estimates the sample moments
via

µ̂k :=
1
n

n∑
i=1

X k
i .

Examples:
X ∼ Poi(λ) : µ1 = λ⇒ µ̂1 = X̄ and λ̂ = X̄
X ∼ N(µ, σ2) : µ1 = µ, µ2 = µ2 + σ2 ⇒ µ̂ = X̄ , σ̂2 =
1
n

∑n
i=1(Xi − X̄ )2 (biased)

X ∼ Γ(α, β) : µ1 = α/β, µ2 = α(α+1)
β2 ⇒ β̂ = µ̂1

µ̂2−µ̂2
1
, α = β̂µ̂1

X ∼ U(0, θ) : µ1 = θ ⇒ θ̂ = 2X̄ (could make no sense)

Pros: easy, consistent, asymptotically unbiased
Cons: could make no sense, not efficient
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Maximum Likelihood

θ̂ = arg max lik(θ) = arg max
∏n

i=1 f (Xi |θ)

θ̂ = arg max l(θ) = arg max
∑n

i=1 log f (Xi |θ)

Example: X ∼ Poi(λ): P(X = x) = λx e−λ
x!

l(λ) =
n∑

i=1

(Xi log λ− λ− log X !)

= logλ
n∑

i=1

Xi − nλ−
n∑

i=1

log X !

l ′(λ) =
1
λ

n∑
i=1

Xi − n = 0⇒ λ̂ = X̄
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Properties of the MLE

Asymptotically unbiased
Consistent (consistency is the least we can ask for!)
Efficient, which means that it achieves the Cramer-Rao
Lower Bound, or that√

nI(θ)(θ̂MLE − θ)→ N(0,1),

and I(θ) := E
[
∂
∂θ log f (X |θ)

]2 (Fisher information)
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Likelihood Ratio Test

Hypothesis: H0 : µ = µ0; HA : µ = µA

Test statistic: Λ = f (X |H0)
f (X |HA) (ratio of likelihoods)

Rejection region: small value of Λ(X )

Most powerful for simple null vs. simple alternative
Example: N(µ, σ) with σ known

H0 : µ = µ0; HA : µ = µA

Λ =
exp[− 1

2σ2
∑n

i=1(Xi−µ0)2]

exp[− 1
2σ2

∑n
i=1(Xi−µA)2]

Reject for small∑n
i=1(Xi−µA)2−

∑n
i=1(Xi−µ0)2 = 2nX̄ (µ0−µA)+nµ2

A−nµ2
0.

If µ0 > µA, reject for small value of X̄ . If µ0 < µA, reject for
large value of X̄
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Generalized Ratio Test

Hypothesis: composite null vs. composite alternative
Test statistic:
Λ =

maxθ∈H0
f (X |θ)

maxθ∈H0∪HA
f (X |θ) ⇒ −2 log Λ ∼ χ2

dim Ω−dimω0
as n→∞

Rejection region: small value of Λ(X ) or large value of
−2 log Λ

Example:
H0 : µ = µ0; HA : µ 6= µ0. σ2 is known

Λ(X ) =
exp[− 1

2σ2
∑n

i=1(Xi−µ0)2]

exp[− 1
2σ2

∑n
i=1(Xi−X̄)2]

Reject when

−2 log Λ > χ2
1(α)⇒

(
X̄−µ0
σ/
√

n

)2
> χ2

1(α)⇒
∣∣∣ X̄−µ0
σ/
√

n

∣∣∣ > z(α/2)

Joshua Agterberg Statistics Review



Generalized Ratio Test

Hypothesis: composite null vs. composite alternative
Test statistic:
Λ =

maxθ∈H0
f (X |θ)

maxθ∈H0∪HA
f (X |θ) ⇒ −2 log Λ ∼ χ2

dim Ω−dimω0
as n→∞

Rejection region: small value of Λ(X ) or large value of
−2 log Λ

Example:
H0 : µ = µ0; HA : µ 6= µ0. σ2 is known

Λ(X ) =
exp[− 1

2σ2
∑n

i=1(Xi−µ0)2]

exp[− 1
2σ2

∑n
i=1(Xi−X̄)2]

Reject when

−2 log Λ > χ2
1(α)⇒

(
X̄−µ0
σ/
√

n

)2
> χ2

1(α)⇒
∣∣∣ X̄−µ0
σ/
√

n

∣∣∣ > z(α/2)

Joshua Agterberg Statistics Review



Generalized Ratio Test

Hypothesis: composite null vs. composite alternative
Test statistic:
Λ =

maxθ∈H0
f (X |θ)

maxθ∈H0∪HA
f (X |θ) ⇒ −2 log Λ ∼ χ2

dim Ω−dimω0
as n→∞

Rejection region: small value of Λ(X ) or large value of
−2 log Λ

Example:
H0 : µ = µ0; HA : µ 6= µ0. σ2 is known

Λ(X ) =
exp[− 1

2σ2
∑n

i=1(Xi−µ0)2]

exp[− 1
2σ2

∑n
i=1(Xi−X̄)2]

Reject when

−2 log Λ > χ2
1(α)⇒

(
X̄−µ0
σ/
√

n

)2
> χ2

1(α)⇒
∣∣∣ X̄−µ0
σ/
√

n

∣∣∣ > z(α/2)

Joshua Agterberg Statistics Review



Generalized Ratio Test

Hypothesis: composite null vs. composite alternative
Test statistic:
Λ =

maxθ∈H0
f (X |θ)

maxθ∈H0∪HA
f (X |θ) ⇒ −2 log Λ ∼ χ2

dim Ω−dimω0
as n→∞

Rejection region: small value of Λ(X ) or large value of
−2 log Λ

Example:
H0 : µ = µ0; HA : µ 6= µ0. σ2 is known

Λ(X ) =
exp[− 1

2σ2
∑n

i=1(Xi−µ0)2]

exp[− 1
2σ2

∑n
i=1(Xi−X̄)2]

Reject when

−2 log Λ > χ2
1(α)⇒

(
X̄−µ0
σ/
√

n

)2
> χ2

1(α)⇒
∣∣∣ X̄−µ0
σ/
√

n

∣∣∣ > z(α/2)

Joshua Agterberg Statistics Review



Summary

When we know exact distributions, we can perform
inference exactly, but these are often only in particular
situations
When we have a proportion, we can use the approximation
to the normal distribution to perform large-sample tests
When we assume a parametric family, we can use the MLE
within that family and be assured that it is asymptotically
normally distributed as well
The MLE is almost always what we want to use
For testing, if we can characterize the distribution under
the null hypothesis, we can calculate p-values
More details in my notes and in 553.630 and 553.730
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Outline

4 Linear Regression
Simple Linear Regression
Multiple Linear Regression
Variable Selection
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Figure: Source:
https://makeameme.org/meme/when-you-advertise-f81897f53a
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What is linear regression?
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Figure: Source: https://en.wikipedia.org/wiki/Linear
regression/media/File:Linear regression.svg
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Model

Write y = β1x + β0 + ε

Assume ε ∼ N(0, σ2)

Want to estimate β̂1 and β̂0

Closed form solution under this model:

β̂1 =
Sxy

Sxx
, β̂0 = ȳ − bx̄ ,

Sxy =
∑

(xi − x̄)(yi − ȳ), Sxx =
∑

(xi − x̄)2
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Hypothesis Testing

Can test whether β1 = 0 since we have the exact distributions
under this model:

β̂1 − β1√
σ2/Sxx

∼ N(0,1),
β̂1 − β1√
MSE/Sxx

∼ tn−2

β̂0 − β0√
σ2 x2/Sxx

∼ N(0,1),
β̂0 − β0√

MSE x2/Sxx

∼ tn−2

ŷ − (β0 + β1x∗)√
MSE( 1

n + (x∗−x̄)2

Sxx
)
∼ tn−2
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Multivariate Setting

In practice, we observe many more variables than the
univariate setting
We might observe: Height, Weight, frequency of physical
activity, etc.
How do we do estimation in this setting?
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Model

Y = Xβ + ε where

Y ∈ Rn,X ∈ Rn×d , β ∈ Rd

E(ε) = 0,E(εε>) = σ2Id Gauss-Markov Assumptions

By convention, we attach a column of all ones to the matrix
X to account for intercept term
Want to estimate β ∈ Rd given the observations X and the
response variables Y
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Estimator

arg min
β∈Rd

‖Xβ − Y‖2 = arg min
β∈Rd

1
2
‖Xβ − Y‖22

= arg min
β∈Rd

1
2
〈Xβ − Y ,Xβ − Y 〉

= arg min
β∈Rd

1
2
〈Xβ,Xβ〉 − 〈Y ,Xβ〉+ 〈Y ,Y 〉

= arg min
β∈Rd

1
2
〈Xβ,Xβ〉 − 〈Y ,Xβ〉
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Estimator

Define f : Rd → R via f (β) = 1
2〈Xβ,Xβ〉 − 〈Y ,Xβ〉.

We will take the derivative and set it equal to zero.

∇f =
d

dβ
1
2
β>X>Xβ − β>X>Y

=⇒ ∇f = X>Xβ − X>Y

=⇒ β̂ = (X>X)−1X>Y

provided X>X is invertible, which happens as long as there is
no collinearity (i.e. no column of X is a linear combination of
other columns)
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OLS Estimator is BLUE

We have that

E(β̂) = E
(

(X>X)−1X>Y
)

= E
(

(X>X)−1X>(Xβ + ε)

)
= E

(
(X>X)−1X>Xβ + (X>X)−1ε

)
= β + E(X>X)−1Xε)

= β

so β̂ is unbiased.
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OLS Estimator is BLUE

Hence, the covariance E
[(
β̂ − β)(β̂ − β)>

]
satisfies

E
[(

(X>X)−1X>Y − β
)(

(X>X)−1X>Y − β
)>]

= E
[(

(X>X)−1X>(Xβ + ε)− β
)(

(X>X)−1X>(Xβ + ε)− β
)>]

= E
[(

(X>X)−1X>ε+ β − β
)(

(X>X)−1X>ε+ β − β
)>]

= E
(

(X>X)−1X>εε>X(X>X)−1
)

= (X>X)−1X>E
(
εε>
)

X(X>X)−1 = σ2(X>X)−1.
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OLS Estimator is BLUE

Let β̃ be any other linear unbiased estimator, where linear
means β̃ = HY for some H. Since β̃ is unbiased,

β = E(β̃) = E(HY ) = HE(Xβ + ε) = HXβ =⇒ HX = Id .

We know that
[

(X>X)−1X>
]
X = Id , so write

H := (X>X)−1X> + C,

for C satisfying CX = 0.
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OLS Estimator is BLUE

Then since

Cov(Y ) = Cov(Xβ + ε) = Cov(ε) = σ2Id ,

we see

Cov(β̃) = Cov(HY ) = HCov(Y )H> = σ2HH>

= σ2
(

(X>X)−1X> + C
)(

(X>X)−1X> + C
)>

= σ2(X>X)−1X>X(X>X)−1

+ CX(X>X)−1 + (X>X)−1X>C> + CC>

= σ2(X>X)−1 + σ2CC>

since CX = 0.
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OLS Estimator is BLUE

So we have shown for any other estimator β̃ that is a linear
function of Y and is unbiased that its variance is the
variance of β̂ plus the matrix σ2CC>

In particular, σ2CC> is a positive semidefinite matrix,
meaning the variance of β̃ exceeds that of β̂ by a positive
semidefinite matrix
This is the Gauss-Markov Theorem.
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Figure: Source: https://medium.com/nybles/understanding-machine-
learning-through-memes-4580b67527bf

Joshua Agterberg Statistics Review



Variable Selection Techniques

Some regression problems have a very large number of
predictors d ≥ n, in which case classical results may not
hold
One way to eliminate this issue is to perform variable
selection
Classical techniques include

AIC
BIC
MSE

AIC and BIC penalize for having too many variables – a
variable has to help “enough"
MSE is agnostic to model choice, but doesn’t penalize for
too many variables
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Stepwise Regression

1 Initiate V := ∅
2 for each variable v /∈ V :

1 Run a model with all the variables in V and the variable vi
2 keep track of the AIC/BIC

3 Find the variable v∗ that maximizes AIC, and set
V := V ∪ v∗.

4 go back to step 2
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Penalized Regression

Instead of minimizing the objective ‖Xβ − Y‖22, one can
add a regularization term
Examples:

λ‖β‖1 (Lasso)
λ‖β‖2 (Ridge)

Intuitively, it penalizes for higher values of β
Common in other Machine Learning problems
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Outline

5 Machine Learning
Supervised Learning
Unsupervised Learning
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Figure: Source: https://towardsdatascience.com/no-machine-
learning-is-not-just-glorified-statistics-26d3952234e3
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Crash Course on Machine Learning

Broadly speaking, there are two areas of machine learning
Supervised learning:

Regression (continuous response)
Classification (categorical response variable)

Unsupervised learning:
No specific response variable
Dimensionality Reduction
Clustering
Manifold Learning

In either case, the resulting inference task may still be
hypothesis testing, estimation, or prediction
Textbooks often focus on estimation and prediction
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Crash Course on Machine Learning

Machine Learning can be closer to engineering or closer to
statistics
I believe machine learning should be principled, but many
just believe it should do well on real problems
Linear regression is principled, and neural networks work
on real problems
Even still, we do not understand everything about linear
regression!
I am happy to discuss this more with anyone
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Figure: Source: https://xkcd.com/1838/
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Coursework

553.630 (Introduction to Statistics) and 553.730 (Statistical
Theory) cover parametric statistical theory
553.731 (Asymptotic Statistics) and 553.735 (Statistical
Pattern Recognition) cover modern statistical theory for
statistics, but mostly emphasize general statistical
inference as opposed to studying algorithms
553.740 (Machine Learning I) and 553.741 (Machine
Learning II) cover modern techniques and theory for
machine learning including optimization
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Coursework

553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear
Optimization II) cover optimization and constrained
optimization (including gradient descent)
553.636 (Introduction to Data Science) covers practical
implementation of Machine Learning Algorithms
Other related courses: 553.792 (Matrix Analysis), 553.632
(Bayesian Statistics), 553.738 (High-dimensional
Statistics) etc.
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Figure: Source: https://pythonhosted.org/PyQt-Fit/NonParam_tut.html
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Regression

Idea is we have covariates X (as in the linear regression
case), and seek to discover Yi = f (Xi) for some function f
Sometimes f is linear (f (Xi) = X>i β)

Sometimes f is more involved (smooth, highly nonlinear,
piecewise linear)
Statistics worries about the statistical properties of an
estimator of f ; machine learning worries about how to
actually do the estimation
Example:

f is a smooth function, and we minimize some objective
function to find our estimator f̂ (nonparametric)
Statistics studies the statistical properties of f̂
Machine Learning studies how to optimize the objective
function for f̂
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Regression

Typically study

inf
f∈F0

n∑
i=1

‖f (Xi)− Yi‖η

for η some norm and F some (computable) function class
Often want to minimize MSE (η = 2)
Examples of ML algorithms to find f above:

Random Forests
Neural Networks
Linear Regression
Nonparametric Regression (splines and things)
More involved classes of functions
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Classification

Response variable Yi ∈ {1, ...,K} for some K
Similar to above, only the norm to minimize is different
Examples include

K -NN
Random Forests
Logistic Regression
Neural Networks

Similar ideas to Regression
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Supervised Learning

Much of Machine Learning is concerned with the details of
the implementation
For example, one may use gradient descent to actually
solve the optimization problem
Other optimization methods exist (second-order methods,
etc.)
One can define a loss function and do some mathematics
to figure out how to solve for the optimal f̂
Also works in more “exotic" situations

Matrix Completion
Subspace Clustering
Graph Clustering
Tensor Methods
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Figure: Source:
https://www.datasciencecentral.com/profiles/blogs/alternatives-to-the-
gradient-descent-algorithm
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Figure: Source:
https://me.me/i/machine-learning-gradient-descent-machine-learning-
machine-learning-behind-the-ea8fe9fc64054eda89232d7ffc9ba60e
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Unsupervised Learning

Want to uncover some hidden structure in the data
Hidden structure could be:

Sparsity
Linearity
“Smooth" Nonlinearity
Clusters

Algorithms proposed for different assumed structure in the
data
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PCA

Principal Components Analysis assumes data are linear
combination of underlying variables
Lots of theory exists in fixed-dimension, high-dimension,
and more
Highly intuitive explanation in terms of covariances and
singular value decompositions
First component of PCA maximizes the variance along that
direction
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PCA

Suppose E(X ) = 0 and E(XX>) = Σ0 + σ2Id , where Σ0 is rank
r < d . Then

E(XX>) = UDU>︸ ︷︷ ︸
top r eigenvectors

+ U⊥D⊥U>⊥︸ ︷︷ ︸
bottom d − r eigenvectors

1
n

n∑
i=1

XiX>i = ÛD̂Û>︸ ︷︷ ︸
top r eigenvectors

+ Û⊥D̂⊥Û>⊥︸ ︷︷ ︸
bottom d − r eigenvectors

Idea is that when dr − dr+1 is sufficiently large then

Û ≈ U D̂ ≈ D.
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Figure: Source: https://towardsdatascience.com/pca-is-not-feature-
selection-3344fb764ae6
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Manifold Learning

Assume we observe Xi ∈ RD, where D is very large
Idea is Xi are noisy observations of a manifoldM⊂ RD,
whereM is of dimension d < D
Example: Xi are from the unit sphere in RD, thenM is of
dimension d = D − 1
Manifold Learning seeks to uncover this manifold structure
Lots of algorithms exist (see Wiki on nonlinear
dimensionality reduction)
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Figure: Source: https://www.semanticscholar.org/paper/Algorithms-
for-manifold-learning-
Cayton/100dcf6aa83ac559c83518c8a41676b1a3a55fc0/figure/0
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Clustering

Clustering assumes data come from a mixture and seeks
to estimate the clusters
Examples:

K-Means (uses only means)
Expectation Maximization Algorithm (Mixtures of
Gaussians)
Spectral Clustering –clusters using eigenvectors of a matrix
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Figure: Source:
https://www.geeksforgeeks.org/clustering-in-machine-learning/
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Outline

6 Nonparametric and High-Dimensional Statistics
Nonparametric Statistics
High-Dimensional Statistics
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Nonparametric Statistics

Recall we had a family of distributions F
Parametric required that F = {fθ : θ ∈ Θ ⊂ Rd}
Nonparametric Statistics makes no such assumption
Estimation requires estimating the function f entirely
(parametric it is easier, since we just need to estimate a
parameter)
Also nonparametric regression, classification, and
hypothesis testing
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High-Dimensional Issues

Let X1, ...,Xn be iid such that EX = µ ∈ Rd with covariance
σ2Id .

P
(
‖X̄ − µ‖ > ε

)
= P

(
‖X̄ − µ‖2 > ε2

)
≤

E
(∑d

j=1
[
X̄ (j)− µ(j)

]2)
ε2

=
dE(X̄ (j)− µj)

2

ε2 =
dσ2

ε2

This shows that

P
(
‖X̄ − µ‖ > σ

√
nd
)
≤ 1

n
.

When d is very small with respect to n, then this is quite useful.
But if σ = 1 and d ≈ n, then this bound is uninformative!
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High-Dimensional Statistics

High-dimensional statistics can (loosely) be broken down
into two areas:

Fixed dimension, fixed n results (Wainwright, 2019;
Vershynin, 2018)
Asymptotics as n,d →∞ (Random Matrix Theory)

The idea is we often observe data with many covariates, so
either we study what happens with all the covariates or we
study how to impose further structure
Further structure includes sparsity, low-rank assumptions,
manifold structure, etc.
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Thank you!

I am available for questions and Zoom if you have further
questions and would like to discuss statistics or anything!
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