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1 Notation

I use much of the same notation as in Mao et al. (2019), but I will not bold matrices. I will also have a few
different eigen decompositions.

We have

• P = ρΘBΘ>, where Θ ∈ [0, 1]n×K and B is full rank.

• P has eigendecomposition P = UΛU>.

• V are the unique rows of the matrix such that P = ΘV (see their Lemma 2.3). This is K ×K matrix
whose rows correspond to pure nodes. If we had a stochastic blockmodel, each row of U would be a
row of V .

• Everything else is the same.

2 Notes on Mao et al. (2019)

This paper is interesting as it is one of the first to tackle entrywise eigenvector deviation not for the sake
of eigenvector deviation, but for a real statistical problem of estimating memberships. The results are very
nice, but it seems to me that they depend more on the eigenstructure of the problem than the randomness
inherent in the problem as in other entrywise works. Their main eigenvector deviation bound is presented
in Theorem 3.1.

Theorem 1 (Theorem 3.1). If nρn = Ω(log(n)), λK(Θ>Θ) ≥ ρ−1 and |λmin(P )| ≥ 4
√
nρ log(n)ξ for some

ξ > 1 and B is full rank there is at least one pure node from each community, then

||Û − UU>Û ||2,∞ = O

(
logξ(n)ψ(P )

√
Kn

√
ρ|λmin(B)|λK(Θ>Θ)1.5

)
,

with probability at least 1−O(Kn−2).

Their version of the theorem hides the log factor. Perhaps the weirdest thing is the appearance of this
ψ(P ) term, which measures “how well the eigenvalues can be packed into bins.” I think the idea behind ψ(P )
is that it allows for eigenvalues of vastly different order (instead of just the smallest eigenvalue). Therefore,
this work explicitly studies the dependence on the eigenvalues of the P matrix in a way that a number of
these sorts of bounds do not. This term allows to have a few eigenvalues of order log(n), a few eigenvalues
of order

√
n and a few eigenvalues of order n.

The rest of their terms are more or less standard, though they do have additional dependence on the
eigenstructure of the problem. For example, we expect both a

√
ρ and λmin(B) in the denominator and a√

K in the numerator. The dependence on n is made a bit clearer by noting that λK(Θ>Θ) = nmin when we
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have a stochastic blockmodel, and when nmin � n, the ratio n1/2

λK(Θ>Θ)1.5
� 1

n . However, their results allow

finer control over the mixing terms Θ>Θ.
In Fan et al. (2019b), the authors assume that λK(Θ>Θ) ≥ c0n regardless of the sparsity factor, which

is a stronger assumption than λK(Θ>Θ) ≥ ρ−1. For example, when ρ ≡ 1, and λmin(B) = Θ(1), then we
can get consistency as long as λK(Θ>Θ) ≥ cn1/3+ε, which is much weaker. Note, however, that the results
in Fan et al. (2019a) concern distributional asymptotics and hence may require more specific assumptions.

Note that I wrote up the version of the theorem that considers the difference from Û to its projection onto

U ; i.e. Û−UU>Û . Recall from last week or the week before that ||U>Û−W∗|| = O
(
||A−P ||
λmin(P )

)2

= O((nρn)−1)

which is negligible with respect to the obtained bound. In general projections are a bit easier to handle than
orthogonal matrices, and U>Û is tending to an orthogonal matrix anyways by the above argument.

The authors do not include a comparison to Cape et al. (2019a), but they do mention in the introduction
that Cape et al. (2019a) requires the K to grow slower than poly-log in n. Furthermore, Cape et al. (2019a)
has results for a more general model than the one in this paper, so they cannot take advantage of the
eigenstructure. However, their results read that

||Û − UW∗||2,∞ ≤ O

(
K1/2 logξ(n)
√
ρn

||U ||2,∞

)
,

which is of the same order when ψ(P ) = Θ(1), and λmin(B) is held constant. But these results don’t quite
work in the setting that λmin(B)→ 0 slower than the mixing coefficients, so it’s not exactly the same.

Finally, their analysis requires a bit of complex analysis which can be, one might say, “complex.” I think
that these bounds can be obtained in other ways, but they might be equally as difficult to trace through, and
the only real complex analysis you need is the residue theorem. The analysis in Abbe et al. (2017) does not
require any contour integrals, but it is still involved with its leave-one-out analysis, which is a bit more of a
probabilistic argument (as are similar types of analyses, e.g. Cai et al. (2019); Abbe et al. (2020)). In Lei
(2019), he points out (very deep into the appendix) that the analysis Mao et al. (2019) is slightly suboptimal
since they do a bound analogous to ∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a) sup
x∈(a,b)

|f(x)|.

I suspect that to get these sorts of bounds, one must either do some complex analysis or use it “under the
hood,” such as in the series expansions in Cape et al. (2019a); Eldridge et al. (2018); Tang (2018); Tang
et al. (2017). If you go the proof for the series expansion in Bhatia, you just end up having to do complex
analysis anyways. I think the reason Lei (2019) obtains very tight bounds is that he does both complex
analysis and leave one out analysis.

3 Discussion Points

• How do these results compare to those in Cape et al. (2019b)?

• Why might studying UU>Û be easier than studying UW∗ where W∗ = sgn(U>Û)?

• What do we think about the complex analytic techniques? Do we like them? Are they too much work
for not much gain?

• These results demonstrate (to me) how eigenstructure plays a role in the analysis – how might other
matrix analytic structure help or hurt us? What about if we have less or even no matrix analytic
structure?

• Why do we assume B is full-rank? Should we?
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