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Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

Spectral Clustering

Principal Components Analysis

Nonconvex algorithm initializations (tensor SVD,
phase retrieval, blind deconvolution)

Problem

Lots is known about convergence, but less is known about un-
certainty quantification.

Goal

Develop fine-grained statistical theory for spectral methods.
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Signal Plus Noise Model

︸ ︷︷ ︸
Signal

+

︸ ︷︷ ︸
Noise

=

︸ ︷︷ ︸
Observation

Goal: More Precise

Develop fine-grained statistical theory for an estimator of
the left singular subspace of the signal matrix.
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Motivation: Spectral Methods

In many problems there is heteroskedasticity and dependence
within each row of the noise.
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This Talk

Goal: Even More Precise

Develop fine-grained statistical theory for an estimator of
the left singular subspace of the signal matrix in the pres-
ence of heteroskedasticity and dependence within
each row of the noise matrix.

“...the geometric relationship between the signal matrix,
the covariance structure of the noise, and the distribution
of the errors...”
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General Model

We observe a low-rank signal matrix corrupted by additive
noise:

M̂ = M︸︷︷︸
signal

+ E︸︷︷︸
noise

.

The signal matrix M is assumed to be (low) rank r with (thin or
compact) singular value decomposition (SVD)

M = UΛV⊤

U ∈ O(n, r) is matrix of leading left singular vectors (its columns
U·j are orthonormal unit vectors)

Λ is a diagonal r × r matrix of singular values
λ1 ≥ λ2 ≥ · · · ≥ λr > 0

V ∈ O(d , r) is matrix of leading right singular vectors
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General Model

We observe a low-rank signal matrix corrupted by additive
noise:

M̂ = M︸︷︷︸
signal

+ E︸︷︷︸
noise

.

The noise matrix E has
independent, mean-zero rows of the form Ei· = Σ

1/2
i Yi

Σi ∈ Rd×d is a positive semidefinite matrix
Yi ∈ Rd is a vector with independent (sub)gaussian
components with variance one
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General Model

Goal: Most Precise

Develop fine-grained statistical theory for an estimator Û of the
n×r matrix U of leading left singular vectors of M upon observ-
ing M + E

Problem

When rows of E have different covariances (heteroskedastic-
ity), the left singular vectors of M + E can be biased!

Solution

Use HeteroPCA algorithm of Zhang et al. (2022) to debias the
estimated singular vectors.
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HeteroPCA Algorithm (Zhang et al., 2022)

Algorithm 1: HeteroPCA Algorithm of Zhang et al. (2022)

Input : N0 = M̂M̂⊤ − diag(M̂M̂⊤), max number of iterations
Tmax

while T ≤ Tmax do
ÑT := SVDr (NT ), the best rank r approximation to NT ;
NT+1 := NT − diag(NT ) + diag(ÑT );

end
Return: Û = Left r singular vectors of NTmax
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Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))
Suppose some technical and regularity conditions hold, and suppose
the signal-to-noise ratio is sufficiently large. Define

S(i) := Λ−1V⊤ΣiVΛ−1.

Then as n,d → ∞, with d ≥ n ≥ log(d), there exists a sequence of
r × r orthogonal matrices O∗ such that

(S(i))−1/2(ÛO∗ − U
)

i· → N(0, Ir ).

Asymptotic covariance of i ’th row of Û depends on how i ’th row
of noise matrix E interacts with Λ and V .
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Understanding the Limiting Variance

Corollary (Agterberg et al. (2022))

Under the conditions of Theorem 1, suppose further that Σi = σ2
i Id

(independent noise with equal variance within each row). Then

(S(i))jj :=
∥Σ1/2

i V·j∥2

λ2
j

=
σ2

i

λ2
j
.

Then there exists a sequence of orthogonal matrices O∗ such that

λj

σi

(
ÛO∗ − U

)
ij → N(0,1).

Asymptotic variance of entries of j ’th estimated singular vector
is proportional to j ’th singular value.
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Setup

Recall that S(i) = Λ−1V⊤ΣiVΛ−1

Consider

Σ1 := 5V·1V·1
⊤ + 5VθV⊤

θ + .1Id

where Vθ satisfies V⊤
θ V·2 = θ and is orthogonal to V·1

Theory suggests that Λ(ÛO∗ − U)1· ≈ N(0,V⊤Σ1V ) and hence

V⊤Σ1V = V⊤
(

5V·1V·1
⊤ + 5VθV⊤

θ + .1Id

)
V

=

(
5 0
0 5θ

)
+

(
.1 0
0 .1

)

So decreasing θ decreases the limiting variance along the
second dimension
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Simulation Result

Figure: 1000 MonteCarlo iterations of the first row of Λ(ÛO∗ − U) with n = d = 1800,
where the covariance changes according to previous slide.
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Conclusion

Wanted to develop fine-grained statistical theory for an estimator
of the left singular vectors of M = UΛV⊤ in the presence of
heteroskedasticity and dependence

Our estimator is based on applying the HeteroPCA algorithm of
Zhang et al. (2022) to the sample gram matrix M̂M̂⊤

We prove limiting entrywise asymptotic normality results for our
estimator in a high-dimensional regime showcasing the
geometric relationship between the signal matrix, the covariance
structure of the noise, and the limiting distribution of the errors
via the limiting covariance matrix

S(i) := Λ−1V⊤ΣiVΛ−1.

Results in paper stated as Berry-Esseen Theorems (with r
allowed to grow), and we show we can estimate limiting
covariance in high-dimensional mixture models, yielding
asymptotically valid confidence intervals.
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Thank you!

7: @JAgterberger



The Problem Theoretical Results Numerical Example Conclusion References

Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))
Suppose some technical and regularity conditions hold. Suppose that

max

{
log(d)
SNR

,max
j

∥Σ1/2
i V·j∥3

3

∥Σ1/2
i V·j∥3

}
→ 0

as n,d → ∞, with d ≥ n ≥ log(d). Define

S(i) := Λ−1V⊤ΣiVΛ−1.

Then there exists a sequence of r × r orthogonal matrices O∗ such
that

(S(i))−1/2(ÛO∗ − U
)

i· → N(0, Ir ).

Asymptotic covariance of i ’th row of Û depends on how Σi in-
teracts with Λ and V .
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More Explanation

We require that

max

{
log(d)
SNR

,max
j

∥Σ1/2
i V·j∥3

3

∥Σ1/2
i V·j∥3

}
→ 0



The Problem Theoretical Results Numerical Example Conclusion References

More Explanation

We require that

max

{
log(d)
SNR︸ ︷︷ ︸

condition on SNR

,max
j

∥Σ1/2
i V·j∥3

3

∥Σ1/2
i V·j∥3︸ ︷︷ ︸

Interaction between
noise and signal

}
→ 0

Special case: Σi ≡ Id , V·j =
±1√

d
(most incoherent vector).

Then

∥Σ1/2
i V·j∥3

3

∥Σ1/2
i V·j∥3

=
∥V·j∥3

3
∥V·j∥3 =

∑d
l=1

(
1√
d

)3

1
=

1√
d
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Asymptotic Normality: r growing

Theorem (Agterberg et al. (2022))
Suppose some technical and regularity conditions hold. Suppose that

max

{
r log(d)√

n
,

r log(d)
SNR

,
∥Σ1/2

i V·j∥3
3

∥Σ1/2
i V·j∥3

}
→ 0

as n,d → ∞, with d ≥ n ≥ log(d). Define

σ2
ij :=

∥Σ1/2
i V·j∥2

λ2
j

.

Then there exists a sequence of orthogonal matrices O∗ such that

1
σij

(
ÛO∗ − U

)
ij → N(0,1).
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Bias

Singular vectors of M̂ = Eigenvectors of M̂M̂⊤

≈ Eigenvectors of E(M̂M̂⊤)

= Eigenvectors of MM⊤ + D,

where Dii = Trace(Σi).

Problem

If Σi ’s are different (i.e. heteroskedastic), then the singular
vectors of M̂ are approximating a deterministic diagonal
perturbation of MM⊤.
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Correcting the Bias

Could delete the diagonal of M̂M̂⊤ and take eigenvectors
of that

Still biased! Then this approximates the eigenvectors of
the matrix

MM⊤ − diag(MM⊤) ̸= MM⊤

Just deleting the diagonal results in an error that does not
scale with the noise
Our idea: use existing HeteroPCA algorithm of Zhang et al.
(2022) to impute the diagonals
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Notation

Important parameters:
Measure of noise: σ2 := maxi ∥Σi∥
Measure of signal: λr = smallest nonzero singular value of
M

Define the signal-to-noise ratio:

SNR :=
λr

σ
√

rd
.

In the homoskedastic setting, SNR → ∞ is required for
consistency when d ≈ n with n,d → ∞.
Condition number of M, κ := λ1

λr
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Notation

New concept:

Covariance Condition Number:

κσ := max
i,j

σ

∥Σ1/2
i V·j∥

Quantifies the geometric relationship with the covariance
structure of the noise on the right singular subspace V

Consider the following special case:

Σi ≡ Id for all i (or any multiple)
Then κσ ≡ 1

κσ only blows up when ∥Σ1/2
i V·j∥ is very small relative to the

overall noise σ (nondegeneracy condition)
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Notation

Incoherence parameter:
Incoherence parameter µ0 of the matrix M:

max
i

∥U i·∥, ∥V i·∥ ≤ µ0

√
r
n

Measures “spikiness” of M

Examples (consider n = d for simplicity):
1 0 · · · 0
0 0 · · · 0
...
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. . .

...
0 0 · · · 0

 versus


1
n · · · 1

n
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1
n · · · 1

n
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Notation

Incoherence parameter:
Incoherence parameter µ0 of the matrix M:

max
i

∥U i·∥, ∥V i·∥ ≤ µ0

√
r
n

Measures “spikiness” of M
Examples (consider n = d for simplicity):

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

µ0=
√

n
r

versus


1
n · · · 1

n
...

. . .
...

1
n · · · 1

n


︸ ︷︷ ︸

µ0=1
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Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))
Suppose that κ, µ0, and κσ are bounded, and that r is fixed. Suppose
that

max

{
log(d)
SNR

,max
j

∥Σ1/2
i V·j∥3

3

∥Σ1/2
i V·j∥3

}
→ 0

as n,d → ∞, with d ≥ n ≥ log(d). Define

S(i) := Λ−1V⊤ΣiVΛ−1.

Then there exists a sequence of orthogonal matrices O∗ such that

(S(i))−1/2(ÛO∗ − U
)

i· → N(0, Ir ).
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Asymptotic Normality: r growing

Theorem (Agterberg et al. (2022))
Suppose that κ, µ0, and κσ are bounded. Suppose that

max

{
r log(d)√

n
,

r log(d)
SNR

,
∥Σ1/2

i V·j∥3
3

∥Σ1/2
i V·j∥3

}
→ 0

as n,d → ∞, with d ≥ n ≥ log(d). Define

σ2
ij :=

∥Σ1/2
i V·j∥2

λ2
j

.

Then there exists a sequence of orthogonal matrices O∗ such that

1
σij

(
ÛO∗ − U

)
ij → N(0,1).
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Simulation I

Figure: 1000 MonteCarlo iterations of the first row of ÛO∗ − U with n = d = 1800,
under a three component mixture model with spherical (identity) covariances within
each component.
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Simulation II

Figure: 1000 MonteCarlo iterations of the first row of Λ(ÛO∗ − U) with n = d = 1800,
under a three component mixture model with both spherical and elliptical covariances
within the first component.
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