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Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

@ Spectral Clustering

Principal Components Analysis
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Nonconvex algorithm initializations (tensor SVD,
phase retrieval, blind deconvolution)

Lots is known about convergence, but less is known about un-
certainty quantification.

Develop fine-grained statistical theory for spectral methods.
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Signal Plus Noise Model

Signal Observation

Goal: More Precise

Develop fine-grained statistical theory for an estimator of
the left singular subspace of the signal matrix.
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This Talk

Goal: Even More Precise

Develop fine-grained statistical theory for an estimator of
the left singular subspace of the signal matrix in the pres-
ence of heteroskedasticity and dependence within
each row of the

“...the geometric relationship between the signal matrix,
the , and the distribution
of the errors...”
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General Model

We observe a low-rank signal matrix corrupted by additive
noise:
M= M + E
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signal  noise



The Problem
000008000

General Model

We observe a low-rank signal matrix corrupted by

The signal matrix M is assumed to be (low) rank r with (thin or
compact) singular value decomposition (SVD)

M= UAVT

@ U e O(n, r) is matrix of leading left singular vectors (its columns
U, are orthonormal unit vectors)

@ Ais adiagonal r x r matrix of singular values
M2 2>2XA>0

@ V € 0O(d, r) is matrix of leading right singular vectors
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General Model

We observe a low-rank signal matrix corrupted by

M= M + E .
~—  ~
signal
The noise matrix £ has
@ independent, mean-zero rows of the form
@ 7, € R9%9 js g positive semidefinite matrix

@ Y, € R%is a vector with independent (sub)gaussian
components with variance one
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ity), the left singular vectors of M + E can be biased!
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General Model

Goal: Most Precise

Develop fine-grained statistical theory for an estimator U of the
nx r matrix U of leading left singular vectors of M upon observ-
ing M +

Problem

| \

When rows of £ have different covariances (heteroskedastic-
ity), the left singular vectors of M + E can be biased!

Solution

Use HeteroPCA algorithm of Zhang et al. (2022) to debias the
estimated singular vectors.
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HeteroPCA Algorithm (Zhang et al., 2022)

Algorithm 1: HeteropCa Algorithm of Zhang et al. (2022)

Input : No = MMT — diag(MMT), max number of iterations
Tm X
while T < ;'max do
NT := SVD,(Nr), the best rank r approximation to Nr;
Nr41 := Ny — diag(Nr) + diag(Nr);
end
Return: U = Left r singular vectors of Nt

max
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Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold, and suppose
the signal-to-noise ratio is sufficiently large. Define

SO .= A=TVTy, VAT,

Then as n,d — oo, with d > n > log(d), there exists a sequence of
r x r orthogonal matrices O, such that

(S~12(00, - U), — N(O, I).
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Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold, and suppose
the signal-to-noise ratio is sufficiently large. Define

SO .= A=TVTy, VAT,

Then as n,d — oo, with d > n > log(d), there exists a sequence of
r x r orthogonal matrices O, such that

(S~12(00, - U), — N(O, I).

Asymptotic covariance of i’th row of U depends on how i’th row
of noise matrix £ interacts with A and V.
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Understanding the Limiting Variance

Corollary (Agterberg et al. (2022))

Under the conditions of Theorem 1, suppose further that >; =
(independent noise with equal variance within each row). Then

ly

: 1= Vil
(8N)y="—"5"=3
AL AL
Then there exists a sequence of orthogonal matrices O, such that

ﬁ(Uo* —U); = N(0,1).
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Understanding the Limiting Variance

Corollary (Agterberg et al. (2022))

Under the conditions of Theorem 1, suppose further that > = oIy
(independent noise with equal variance within each row). Then

=T V)P
(81, := T - 7]2

Then there exists a sequence of orthogonal matrices O, such that

ﬁ(Uo* —U); = N(0,1).

Asymptotic variance of entries of j'th estimated singular vector
is proportional to j’th singular value.
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Setup

@ Recall that S) = ATV T3 VAT
@ Consider

=5V VT +5VpV,) + .11y

where V) satisfies V| V.o = ¢ and is orthogonal to V.4
@ Theory suggests that /\(UO* — U)1. = N(0, VT3, V) and hence

VT vsz(s\/.1\/.1T+5v9vJ+.1/d>v
5 0 10
—<o 59)*(0 .1)

@ So decreasing ¢ decreases the limiting variance along the
second dimension
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Simulation Result
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Figure: 1000 MonteCarlo iterations of the first row of A(UO* — U) with n = d = 1800,
where the covariance changes according to previous slide.
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Conclusion

@ Wanted to develop fine-grained statistical theory for an estimator
of the left singular vectors of M = UAV'T in the presence of
heteroskedasticity and dependence

@ Our estimator is based on applying the HeteroPCA algorithm of
Zhang et al. (2022) to the sample gram matrix MMT

@ We prove limiting entrywise asymptotic normality results for our
estimator in a high-dimensional regime showcasing the
geometric relationship between the signal matrix,

, and the limiting distribution of the errors
via the limiting covariance matrix

SO = ATV Ty, VAT,

@ Results in paper stated as Berry-Esseen Theorems (with r
allowed to grow), and we show we can estimate limiting
covariance in high-dimensional mixture models, yielding
asymptotically valid confidence intervals.
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Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))
Suppose some technical and regularity conditions hold. Suppose that

V.S
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as n,d — oo, with d > n > log(d). Define
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Then there exists a sequence of r x r orthogonal matrices O,. such
that

(S~12(00o, - U), — N(O, ).
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Theorem (Agterberg et al. (2022))
Suppose some technical and regularity conditions hold. Suppose that
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7.X
SNR 5 IRV, R

as n,d — oo, with d > n > log(d). Define
SO = A"TVTE VAT,

Then there exists a sequence of r x r orthogonal matrices O,. such
that

(S~12(00o, - U), — N(O, ).

Asymptotic covariance of /'th row of ] depends on how > in-
teracts with A and V.
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More Explanation

@ We require that

V; 3
max{ log(0) , max 7” /”3 } —0
SNR s )

condition on SNR -
Interaction between
and signal

@ Special case: >, = Iy, V; = +1 (most incoherent vector).
Then

3

3
d 1
=28 valg = <¢8> B
1= v VGl 1

3
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Asymptotic Normality: r growing

Theorem (Agterberg et al. (2022))
Suppose some technical and regularity conditions hold. Suppose that

rlog(d) rlog(d) | V-j||§}
ax , , — 0
{ Vvn SNR | V3

as n,d — oo, with d > n > log(d). Define

o _ IV

Then there exists a sequence of orthogonal matrices O, such that

1

Tj

(U0, - U), — N(O, 1).
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Bias

Singular vectors of M = Eigenvectors of MM "
~ Eigenvectors of E(MM)
= Eigenvectors of MM + D,
where D;; = Trace(X;).
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Bias

Singular vectors of M = Eigenvectors of MM "
~ Eigenvectors of E(MM)
= Eigenvectors of MM + D,
where D;; = Trace(X;).

Problem

If >’s are different (i.e. heteroskedastic), then the singular
vectors of M are approximating a deterministic diagonal
perturbation of MM .
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Correcting the Bias

@ Could delete the diagonal of MMT and take eigenvectors
of that

@ Still biased! Then this approximates the eigenvectors of
the matrix

MM — diag(MM ™) # MM

@ Just deleting the diagonal results in an error that does not
scale with the noise

@ Our idea: use existing HeteroPCA algorithm of Zhang et al.
(2022) to impute the diagonals
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In the homoskedastic setting, SNR — oo is required for
consistency when d ~ nwith n,d — oc.
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Notation

Important parameters:
@ Measure of noise: o° := max; |||

@ Measure of signal: A\, = smallest nonzero singular value of
M

@ Define the signal-to-noise ratio:

SNR =

Vrd’
In the homoskedastic setting, SNR — oo is required for
consistency when d ~ nwith n,d — oc.

e Condition number of M, r := 3t
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Notation

New concept:
@ Covariance Condition Number:

Ko 1= max

G PR A1l

Quantifies the geometric relationship with the covariance
structure of the on the right singular subspace V

@ Consider the following special case:

e »; = Iy forall i (or any multiple)
o Thenk, =1
@ s, only blows up when || V|| is very small relative to the

overall noise o (hondegeneracy condition)
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Notation

Incoherence parameter:
@ Incoherence parameter 1o of the matrix M:

:
max [ Us |, [ Vi) < uof
i n

Measures “spikiness” of M
Examples (consider n = d for simplicity):

0 --- 0 1
0 --- 0
versus

1
0

- =

o
o
Sl= eee 3
Si=
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Notation

Incoherence parameter:
@ Incoherence parameter 1o of the matrix M:

r
max U3, 1Vl < oy [
i n

Measures “spikiness” of M
Examples (consider n = d for simplicity):

1 0 0 1 1
0 0 0 n
L .| versus :

: 1.1
0O 0 - 0 n n

po=1
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Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))

Suppose that k, 119, and r,, are bounded, and that r is fixed. Suppose
that

log(d) 1= " Vil§ }
ax , max -0
Vs 1=Vl

as n,d — oo, withd > n > log(d). Define
SO = ATV VA,

Then there exists a sequence of orthogonal matrices O, such that

(S~12(00, - U), — N(O, I).
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Asymptotic Normality: r growing

Theorem (Agterberg et al. (2022))
Suppose that k, 119, and r,, are bounded. Suppose that

rlog(d) rlog(d) | Vj||§}
ax , , —0
{ vn SNR | v,|3

as n,d — oo, with d > n > log(d). Define

o _ IV

Then there exists a sequence of orthogonal matrices O, such that

T

Tj

(U0, - U), = N(O, 1).
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Figure: 1000 MonteCarlo iterations of the first row of U0. — U with n= d = 1800,

under a three component mixture model with spherical (identity) covariances within
each component.
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Figure: 1000 MonteCarlo iterations of the first row of A(U(’lk — U) with n = d = 1800,
under a three component mixture model with both spherical and elliptical covariances

within the first component.
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