The Problem	Theoretical Results	Numerical Example	Conclusion 00	References

Entrywise Estimation of Singular Vectors of Low-Rank Matrices with Heteroskedasticity and Dependence

Joshua Agterberg

Johns Hopkins University

JSM 2022 Based on a paper with Zachary Lubberts and Carey Priebe

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Outline				

2 Theoretical Results

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Outline				

2 Theoretical Results

3 Numerical Example

4 Conclusion

The Problem
o ● 0000000Theoretical Results
000Numerical Example
000Conclusion
000Reference
00000000

Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

- Spectral Clustering
- Principal Components Analysis
- Nonconvex algorithm initializations (tensor SVD, phase retrieval, blind deconvolution)

・ コット (雪) (小田) (コット 日)

 The Problem
 Theoretical Results
 Numerical Example
 Conclusion
 References

 00000000
 000
 000
 000
 000
 0000000000

Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

- Spectral Clustering
- Principal Components Analysis
- Nonconvex algorithm initializations (tensor SVD, phase retrieval, blind deconvolution)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problem

Lots is known about convergence, but less is known about *uncertainty quantification*.

 The Problem
 Theoretical Results
 Numerical Example
 Conclusion
 References

 00000000
 000
 000
 000
 000
 000
 000000000

Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

- Spectral Clustering
- Principal Components Analysis
- Nonconvex algorithm initializations (tensor SVD, phase retrieval, blind deconvolution)

Problem

Lots is known about convergence, but less is known about *uncertainty quantification*.

Goal

Develop fine-grained statistical theory for spectral methods.

The Problem	Theoretical Results	Numerical Example	Conclusion	References	
Signal Plus Naisa Madal					

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Signal Plus Noise Model				

Signal Plus Noise Model

Goal: More Precise

Develop *fine-grained statistical theory* for **an estimator of the left singular subspace of the signal matrix.**

(日) (日) (日) (日) (日) (日) (日)

Motivation: Spectral Methods

In many problems there is *heteroskedasticity* and *dependence* within each row of the noise.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 The Problem
 Theoretical Results
 Numerical Example
 Conclusion
 References

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

Motivation: Spectral Methods

In many problems there is *heteroskedasticity* and *dependence* within each row of the noise.

The Problem ○○○○●○○○○	Theoretical Results	Numerical Example	Conclusion	References
This Talk				

Goal: Even More Precise

Develop *fine-grained statistical theory* for an estimator of the left singular subspace of the signal matrix in the presence of heteroskedasticity and dependence within each row of the noise matrix.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Problem ○○○○●○○○○	Theoretical Results	Numerical Example	Conclusion	References
This Talk				

Goal: Even More Precise

Develop *fine-grained statistical theory* for an estimator of the left singular subspace of the signal matrix in the presence of heteroskedasticity and dependence within each row of the noise matrix.

"...the geometric relationship between the signal matrix, the covariance structure of the noise, and the distribution of the errors..."

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We observe a low-rank signal matrix corrupted by additive noise:

 $\widehat{M} = \underbrace{M}_{+} \underbrace{E}_{-}.$ signal noise

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We observe a low-rank signal matrix corrupted by additive noise:

The signal matrix M is assumed to be (low) rank r with (thin or compact) singular value decomposition (SVD)

 $M = U \wedge V^{\top}$

- *U* ∈ D(*n*, *r*) is matrix of leading left singular vectors (its columns *U*, are orthonormal unit vectors)
- Λ is a diagonal r × r matrix of singular values
 λ₁ ≥ λ₂ ≥ · · · ≥ λ_r > 0
- V ∈ O(d, r) is matrix of leading right singular vectors

The Problem ○○○○○○●○○	Theoretical Results	Numerical Example	Conclusion	References
General N	Model			

We observe a low-rank signal matrix corrupted by additive noise:

$$\widehat{M} = \underbrace{M}_{\text{signal}} + \underbrace{E}_{\text{noise}}.$$

The noise matrix *E* has

- independent, mean-zero rows of the form $E_{i} = \sum_{i}^{1/2} Y_{i}$
- $\Sigma_i \in \mathbb{R}^{d \times d}$ is a positive semidefinite matrix
- Y_i ∈ ℝ^d is a vector with independent (sub)gaussian components with variance one

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Problem	Theoretical Results	Numerical Example	Conclusion	References
General I	Model			

Goal: Most Precise

Develop *fine-grained statistical theory* for an estimator \hat{U} of the $n \times r$ matrix U of leading left singular vectors of M upon observing M + E

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Problem	Theoretical Results	Numerical Example	Conclusion	References
General I	Model			

Goal: Most Precise

Develop *fine-grained statistical theory* for an estimator \hat{U} of the $n \times r$ matrix U of leading left singular vectors of M upon observing M + E

Problem

When rows of *E* have different covariances (heteroskedasticity), the left singular vectors of M + E can be biased!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Problem	Theoretical Results	Numerical Example	Conclusion	References
General I	Model			

Goal: Most Precise

Develop fine-grained statistical theory for an estimator \hat{U} of the $n \times r$ matrix U of leading left singular vectors of M upon observing M + E

Problem

When rows of *E* have different covariances (heteroskedasticity), the left singular vectors of M + E can be biased!

Solution

Use HeteroPCA algorithm of Zhang et al. (2022) to *debias* the estimated singular vectors.

HeteroPCA Algorithm (Zhang et al., 2022)

Algorithm 1: HeteroPCA Algorithm of Zhang et al. (2022)

Input : $N_0 = \widehat{M}\widehat{M}^{\top} - \operatorname{diag}(\widehat{M}\widehat{M}^{\top})$, max number of iterations T_{\max} while $T \leq T_{\max}$ do $| \widetilde{N}_T := \operatorname{SVD}_r(N_T)$, the best rank *r* approximation to N_T ; $N_{T+1} := N_T - \operatorname{diag}(N_T) + \operatorname{diag}(\widetilde{N}_T)$; end Return: \widehat{U} = Left *r* singular vectors of $N_{T_{\max}}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Outline				

4 Conclusion

Asymptotic Normality: *r* fixed

Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold, and suppose the signal-to-noise ratio is sufficiently large. Define

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

Then as $n, d \to \infty$, with $d \ge n \ge \log(d)$, there exists a sequence of $r \times r$ orthogonal matrices \mathcal{O}_* such that

 $(S^{(i)})^{-1/2} (\widehat{U}\mathcal{O}_* - U)_{i.} \rightarrow N(0, I_r).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Asymptotic Normality: *r* fixed

Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold, and suppose the signal-to-noise ratio is sufficiently large. Define

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

Then as $n, d \to \infty$, with $d \ge n \ge \log(d)$, there exists a sequence of $r \times r$ orthogonal matrices \mathcal{O}_* such that

$$(S^{(i)})^{-1/2} (\widehat{U}\mathcal{O}_* - U)_{i} \rightarrow N(0, I_r).$$

Asymptotic covariance of *i*'th row of \hat{U} depends on how *i*'th row of noise matrix *E* interacts with Λ and *V*.

The Problem	Theoretical Results	Numerical Example	Conclusion	References
00000000	00•	000	00	000000000000000000000000000000000000000

Understanding the Limiting Variance

Corollary (Agterberg et al. (2022))

Under the conditions of Theorem 1, suppose further that $\sum_{i} = \sigma_{i}^{2} I_{d}$ (independent noise with equal variance within each row). Then

$$(S^{(i)})_{jj} := rac{\|\Sigma_i^{1/2} V_{\cdot j}\|^2}{\lambda_j^2} = rac{\sigma_i^2}{\lambda_j^2}.$$

Then there exists a sequence of orthogonal matrices \mathcal{O}_* such that

$$rac{\lambda_j}{\sigma_j} (\widehat{\mathcal{U}}\mathcal{O}_* - \mathcal{U})_{ij}
ightarrow N(0,1).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Problem	Theoretical Results	Numerical Example	Conclusion	References
00000000	000	000	00	000000000000000000000000000000000000000

Understanding the Limiting Variance

Corollary (Agterberg et al. (2022))

Under the conditions of Theorem 1, suppose further that $\sum_{i} = \sigma_{i}^{2} I_{d}$ (independent noise with equal variance within each row). Then

$$(S^{(i)})_{jj} := rac{\|\Sigma_i^{1/2} V_{\cdot j}\|^2}{\lambda_j^2} = rac{\sigma_i^2}{\lambda_j^2}.$$

Then there exists a sequence of orthogonal matrices \mathcal{O}_* such that

$$rac{\lambda_j}{\sigma_i} (\widehat{\mathcal{U}}\mathcal{O}_* - \mathcal{U})_{ij}
ightarrow N(0,1).$$

Asymptotic variance of entries of *j*'th estimated singular vector is proportional to *j*'th singular value.

The Problem	Theoretical Results	Numerical Example •oo	Conclusion	References
Outline				

Conclusion

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Setup				

• Recall that $S^{(i)} = \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}$

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Setup				

- Recall that $S^{(i)} = \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}$
- Consider

$$\Sigma_1 := 5 V_{\cdot 1} V_{\cdot 1}^{\top} + 5 V_{\theta} V_{\theta}^{\top} + .1 I_d$$

where V_{θ} satisfies $V_{\theta}^{\top} V_{.2} = \theta$ and is orthogonal to $V_{.1}$

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Setup				

• Recall that $S^{(i)} = \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}$

Consider

$$\Sigma_1 := 5 \mathbf{V}_{\cdot 1} \mathbf{V}_{\cdot 1}^{\top} + 5 \mathbf{V}_{\theta} \mathbf{V}_{\theta}^{\top} + .1 \mathbf{I}_d$$

where V_{θ} satisfies $V_{\theta}^{\top} V_{.2} = \theta$ and is orthogonal to $V_{.1}$

• Theory suggests that $\Lambda(\widehat{U}\mathcal{O}_* - U)_{1.} \approx N(0, V^{\top}\Sigma_1 V)$ and hence

$$\boldsymbol{V}^{\top}\boldsymbol{\Sigma}_{1}\boldsymbol{V} = \boldsymbol{V}^{\top}\left(\boldsymbol{5}\boldsymbol{V}_{.1}\boldsymbol{V}_{.1}^{\top} + \boldsymbol{5}\boldsymbol{V}_{\theta}\boldsymbol{V}_{\theta}^{\top} + .1\boldsymbol{I}_{d}\right)\boldsymbol{V}$$
$$= \begin{pmatrix}\boldsymbol{5} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{5}\theta\end{pmatrix} + \begin{pmatrix}.1 & \boldsymbol{0}\\ \boldsymbol{0} & .1\end{pmatrix}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Setup				

• Recall that $S^{(i)} = \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}$

Consider

$$\Sigma_1 := 5 \mathbf{V}_{\cdot 1} \mathbf{V}_{\cdot 1}^{\top} + 5 \mathbf{V}_{\theta} \mathbf{V}_{\theta}^{\top} + .1 \mathbf{I}_d$$

where V_{θ} satisfies $V_{\theta}^{\top} V_{.2} = \theta$ and is orthogonal to $V_{.1}$

• Theory suggests that $\Lambda(\widehat{U}\mathcal{O}_* - U)_{1.} \approx N(0, V^{\top}\Sigma_1 V)$ and hence

$$\boldsymbol{V}^{\top}\boldsymbol{\Sigma}_{1} \boldsymbol{V} = \boldsymbol{V}^{\top} \left(5\boldsymbol{V}_{.1} \boldsymbol{V}_{.1}^{\top} + 5\boldsymbol{V}_{\theta} \boldsymbol{V}_{\theta}^{\top} + .1\boldsymbol{I}_{d} \right) \boldsymbol{V}$$
$$= \begin{pmatrix} 5 & 0\\ 0 & 5\theta \end{pmatrix} + \begin{pmatrix} .1 & 0\\ 0 & .1 \end{pmatrix}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

So decreasing θ decreases the limiting variance along the second dimension

The Problem	Theoretical Results	Numerical Example	Conclusion	Ref
000000000	000	000	00	000

Simulation Result

Figure: 1000 MonteCarlo iterations of the first row of $\Lambda(\hat{U}\mathcal{O}_* - U)$ with n = d = 1800, where the covariance changes according to previous slide.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

The Problem	Theoretical Results	Numerical Example	Conclusion • O	References
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Problem	Theoretical Results	Numerical Example	Conclusion ○●	References
Conclusio	n			

• Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of $M = U \wedge V^{\top}$ in the presence of *heteroskedasticity and dependence*

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Conclusio	n			

- Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of $M = U \wedge V^{\top}$ in the presence of *heteroskedasticity and dependence*
- Our estimator is based on applying the HeteroPCA algorithm of Zhang et al. (2022) to the sample gram matrix $\widehat{M}\widehat{M}^{\top}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Problem	Theoretical Results	Numerical Example	Conclusion ○●	References
Conclusio	on			

- Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of $M = U \wedge V^{\top}$ in the presence of *heteroskedasticity and dependence*
- Our estimator is based on applying the HeteroPCA algorithm of Zhang et al. (2022) to the sample gram matrix $\widehat{M}\widehat{M}^{\top}$
- We prove limiting entrywise asymptotic normality results for our estimator in a high-dimensional regime showcasing the geometric relationship between the signal matrix, the covariance structure of the noise, and the limiting distribution of the errors via the limiting covariance matrix

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Problem	Theoretical Results	Numerical Example	Conclusion ○●	References
Conclusio	on			

- Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of $M = U \wedge V^{\top}$ in the presence of *heteroskedasticity and dependence*
- Our estimator is based on applying the HeteroPCA algorithm of Zhang et al. (2022) to the sample gram matrix $\widehat{M}\widehat{M}^{\top}$
- We prove limiting entrywise asymptotic normality results for our estimator in a high-dimensional regime showcasing the geometric relationship between the signal matrix, the covariance structure of the noise, and the limiting distribution of the errors via the limiting covariance matrix

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

Results in paper stated as Berry-Esseen Theorems (with r allowed to grow), and we show we can estimate limiting covariance in high-dimensional mixture models, yielding asymptotically valid confidence intervals.

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Reference	es I			

- Joshua Agterberg, Zachary Lubberts, and Carey E. Priebe. Entrywise Estimation of Singular Vectors of Low-Rank Matrices With Heteroskedasticity and Dependence. *IEEE Transactions on Information Theory*, 68(7):4618–4650, July 2022. ISSN 1557-9654. doi: 10.1109/TIT.2022.3159085.
- Anru R. Zhang, T. Tony Cai, and Yihong Wu. Heteroskedastic PCA: Algorithm, optimality, and applications. *The Annals of Statistics*, 50(1):53–80, February 2022. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2074.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Problem	Theoretical Results	Numerical Example	Conclusion	References
00000000	000	000	00	•00000000000000

Thank you!

У: @JAgterberger

The Problem The	oretical Results	Numerical Example	Conclusion	References
00000000 000	с (000	00	000000000000000000000000000000000000000

Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold. Suppose that

$$\max\left\{\frac{\log(d)}{\mathrm{SNR}}, \max_{j} \frac{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{j}\|_{3}^{3}}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{j}\|^{3}}\right\} \to 0$$

as $n, d \to \infty$, with $d \ge n \ge \log(d)$. Define

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

Then there exists a sequence of $r \times r$ orthogonal matrices \mathcal{O}_* such that

$$(S^{(i)})^{-1/2} (\widehat{\mathcal{U}}\mathcal{O}_* - \mathcal{U})_{i.} \rightarrow \mathcal{N}(0, I_r).$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

The Problem	Theoretical Results	Numerical Example	Conclusion	References
00000000	000	000	00	000000000000000000000000000000000000000

Asymptotic Normality: r fixed

Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold. Suppose that

$$\max\left\{\frac{\log(d)}{\mathrm{SNR}}, \max_{j} \frac{\|\boldsymbol{\Sigma}_{j}^{1/2}\boldsymbol{V}_{j}\|_{3}^{3}}{\|\boldsymbol{\Sigma}_{j}^{1/2}\boldsymbol{V}_{j}\|^{3}}\right\} \to 0$$

as $n, d \rightarrow \infty$, with $d \ge n \ge \log(d)$. Define

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

Then there exists a sequence of $r \times r$ orthogonal matrices \mathcal{O}_* such that

$$(S^{(i)})^{-1/2} (\widehat{\mathcal{U}}\mathcal{O}_* - \mathcal{U})_i \rightarrow \mathcal{N}(0, I_r).$$

Asymptotic covariance of *i*'th row of \hat{U} depends on how Σ_i interacts with Λ and V.

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○●○○○○○○○○○○○○
More Exp	lanation			

• We require that

$$\max\left\{\frac{\log(d)}{\mathrm{SNR}}, \max_{j} \frac{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{j}\|_{3}^{3}}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{j}\|^{3}}\right\} \to 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The Problem	Theoretical Results	Numerical Example	Conclusion	References
More Exp	lanation			

• We require that

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○●○○○○○○○○○○○
More Exp	lanation			

• We require that

• Special case: $\sum_{i} \equiv I_d$, $V_{ij} = \frac{\pm 1}{\sqrt{d}}$ (most *incoherent* vector). Then

$$\frac{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|_{3}^{3}}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|^{3}} = \frac{\|\boldsymbol{V}_{.j}\|_{3}^{3}}{\|\boldsymbol{V}_{.j}\|^{3}} = \frac{\sum_{l=1}^{d} \left(\frac{1}{\sqrt{d}}\right)^{3}}{1} = \frac{1}{\sqrt{d}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 The Problem
 Theoretical Results
 Numerical Example
 Conclusion
 References

 0000
 000
 000
 000
 000
 000

Asymptotic Normality: *r* growing

Theorem (Agterberg et al. (2022))

Suppose some technical and regularity conditions hold. Suppose that

$$\max\left\{\frac{r\log(d)}{\sqrt{n}}, \frac{r\log(d)}{\mathrm{SNR}}, \frac{\|\boldsymbol{\Sigma}_i^{1/2} \boldsymbol{V}_i\|_3^3}{\|\boldsymbol{\Sigma}_i^{1/2} \boldsymbol{V}_i\|_3^3}\right\} \to \mathbf{C}$$

as $n, d \to \infty$, with $d \ge n \ge \log(d)$. Define

$$\sigma_{ij}^2 := \frac{\|\boldsymbol{\Sigma}_i^{1/2} \boldsymbol{V}_{\cdot j}\|^2}{\lambda_j^2}.$$

Then there exists a sequence of orthogonal matrices \mathcal{O}_* such that

$$\frac{1}{\sigma_{ij}}(\widehat{U}\mathcal{O}_*-\boldsymbol{U})_{ij}\to N(0,1).$$

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○●○○○○○○○○○
Bias				

Singular vectors of $\widehat{M} =$ Eigenvectors of $\widehat{M}\widehat{M}^{\top}$ \approx Eigenvectors of $\mathbb{E}(\widehat{M}\widehat{M}^{\top})$ = Eigenvectors of $MM^{\top} + D$, where $D_{ii} = \text{Trace}(\Sigma_i)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○●○○○○○○○○○
Bias				

Singular vectors of
$$\widehat{M} =$$
 Eigenvectors of $\widehat{M}\widehat{M}^{\top}$
 \approx Eigenvectors of $\mathbb{E}(\widehat{M}\widehat{M}^{\top})$
 $=$ Eigenvectors of $MM^{\top} + D_{ii}$
where $D_{ii} = \text{Trace}(\Sigma_i)$.

Problem

If Σ_i 's are different (i.e. *heteroskedastic*), then the singular vectors of \widehat{M} are approximating a *deterministic diagonal perturbation* of MM^{\top} .

• Could delete the diagonal of $\widehat{M}\widehat{M}^{\top}$ and take eigenvectors of that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Could delete the diagonal of $\widehat{M}\widehat{M}^{\top}$ and take eigenvectors of that
- Still biased! Then this approximates the eigenvectors of the matrix

 $\boldsymbol{M}\boldsymbol{M}^\top - \operatorname{diag}(\boldsymbol{M}\boldsymbol{M}^\top) \neq \boldsymbol{M}\boldsymbol{M}^\top$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Could delete the diagonal of $\widehat{M}\widehat{M}^{\top}$ and take eigenvectors of that
- Still biased! Then this approximates the eigenvectors of the matrix

$$MM^{\top} - \operatorname{diag}(MM^{\top}) \neq MM^{\top}$$

- Just deleting the diagonal results in an error that does not *scale with the noise*
- Our idea: use existing HeteroPCA algorithm of Zhang et al. (2022) to *impute* the diagonals

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Notation				

- Measure of noise: $\sigma^2 := \max_i \|\Sigma_i\|$
- Measure of signal: $\lambda_r =$ smallest nonzero singular value of M

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Notation				

- Measure of noise: $\sigma^2 := \max_i \|\Sigma_i\|$
- Measure of signal: $\lambda_r =$ smallest nonzero singular value of M
- Define the signal-to-noise ratio:

$$\mathrm{SNR} := \frac{\lambda_r}{\sigma \sqrt{rd}}.$$

(日) (日) (日) (日) (日) (日) (日)

The Problem	Theoretical Results	Numerical Example	Conclusion	References
Notation				

- Measure of noise: $\sigma^2 := \max_i \|\Sigma_i\|$
- Measure of signal: $\lambda_r =$ smallest nonzero singular value of M
- Define the signal-to-noise ratio:

$$\mathrm{SNR} := \frac{\lambda_r}{\sigma \sqrt{rd}}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In the homoskedastic setting, SNR $\rightarrow \infty$ is required for consistency when $d \approx n$ with $n, d \rightarrow \infty$.

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○●○○○○○○
Notation				

- Measure of noise: $\sigma^2 := \max_i \|\Sigma_i\|$
- Measure of signal: $\lambda_r =$ smallest nonzero singular value of M
- Define the signal-to-noise ratio:

$$\mathrm{SNR} := \frac{\lambda_r}{\sigma \sqrt{rd}}.$$

(日) (日) (日) (日) (日) (日) (日)

In the homoskedastic setting, SNR $\rightarrow \infty$ is required for consistency when $d \approx n$ with $n, d \rightarrow \infty$.

• Condition number of M, $\kappa := \frac{\lambda_1}{\lambda_r}$

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○○
Notation				

• Covariance Condition Number:

$$\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○○
Notation				

• Covariance Condition Number:

$$\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace V

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○○
Notation				

• Covariance Condition Number:

$$\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace V

• Consider the following special case:

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○○
Notation				

• Covariance Condition Number.

$$\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace V

- Consider the following special case:
 - $\Sigma_i \equiv I_d$ for all *i* (or any multiple)
 - Then $\kappa_{\sigma} \equiv 1$

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○○
Notation				

• Covariance Condition Number:

$$\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\boldsymbol{\Sigma}_{i}^{1/2} \boldsymbol{V}_{.j}\|}$$

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace V

- Consider the following special case:
 - $\Sigma_i \equiv I_d$ for all *i* (or any multiple)
 - Then $\kappa_{\sigma} \equiv 1$
- κ_{σ} only blows up when $\|\sum_{i=1}^{1/2} V_{ij}\|$ is very small relative to the overall noise σ (nondegeneracy condition)

(日) (日) (日) (日) (日) (日) (日)

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○
Notation				

Incoherence parameter:

• Incoherence parameter μ_0 of the matrix *M*:

$$\max_{i} \|\boldsymbol{U}_{i\cdot}\|, \|\boldsymbol{V}_{i\cdot}\| \leq \mu_0 \sqrt{\frac{r}{n}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Measures "spikiness" of M

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○●○○○○○
Notation				

Incoherence parameter:

• Incoherence parameter μ_0 of the matrix *M*:

$$\max_{i} \|\boldsymbol{U}_{i\cdot}\|, \|\boldsymbol{V}_{i\cdot}\| \leq \mu_0 \sqrt{\frac{r}{n}}$$

Measures "spikiness" of MExamples (consider n = d for simplicity):

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \text{ versus } \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○○○●○○○○
Notation				

Incoherence parameter:

• Incoherence parameter μ_0 of the matrix *M*:

$$\max_{i} \|\boldsymbol{U}_{i\cdot}\|, \|\boldsymbol{V}_{i\cdot}\| \leq \mu_0 \sqrt{\frac{r}{n}}$$

Measures "spikiness" of M

Examples (consider n = d for simplicity):

$$\underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}}_{\mu_0 = \sqrt{\frac{n}{r}}} \operatorname{versus} \underbrace{\begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}}_{\mu_0 = 1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

 The Problem
 Theoretical Results
 Numerical Example
 Conclusion
 References

 000000000
 000
 000
 000
 000
 000

Asymptotic Normality: *r* fixed

Theorem (Agterberg et al. (2022))

Suppose that κ , μ_0 , and κ_σ are bounded, and that r is fixed. Suppose that

$$\max\left\{\frac{\log(d)}{\mathrm{SNR}}, \max_{j} \frac{\|\boldsymbol{\Sigma}_{j}^{1/2}\boldsymbol{V}_{j}\|_{3}^{3}}{\|\boldsymbol{\Sigma}_{j}^{1/2}\boldsymbol{V}_{j}\|^{3}}\right\} \to 0$$

as $n, d \to \infty$, with $d \ge n \ge \log(d)$. Define

 $S^{(i)} := \Lambda^{-1} V^{\top} \Sigma_i V \Lambda^{-1}.$

Then there exists a sequence of orthogonal matrices \mathcal{O}_* such that

$$(S^{(i)})^{-1/2} (\widehat{U}\mathcal{O}_* - U)_{i.} \rightarrow N(0, I_r).$$

 The Problem
 Theoretical Results
 Numerical Example
 Conclusion
 References

 0000
 000
 000
 000
 000
 000

Asymptotic Normality: *r* growing

Theorem (Agterberg et al. (2022))

Suppose that κ , μ_0 , and κ_σ are bounded. Suppose that

$$\max\left\{\frac{r\log(d)}{\sqrt{n}}, \frac{r\log(d)}{\mathrm{SNR}}, \frac{\|\sum_{i}^{1/2} V_{ij}\|_{3}^{3}}{\|\sum_{i}^{1/2} V_{ij}\|_{3}^{3}}\right\} \to 0$$

as $n, d \to \infty$, with $d \ge n \ge \log(d)$. Define

$$\sigma_{ij}^2 := \frac{\|\boldsymbol{\Sigma}_i^{1/2} \boldsymbol{V}_{\cdot j}\|^2}{\lambda_j^2}.$$

Then there exists a sequence of orthogonal matrices \mathcal{O}_\ast such that

$$\frac{1}{\sigma_{ij}}(\widehat{U}\mathcal{O}_*-\boldsymbol{U})_{ij}\to N(0,1).$$

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○○○○○○○
Simulatio	on I			

Figure: 1000 MonteCarlo iterations of the first row of $\widehat{U}\mathcal{O}_* - U$ with n = d = 1800, under a three component mixture model with spherical (identity) covariances within each component.

The Problem	Theoretical Results	Numerical Example	Conclusion	References ○○○○○○○○○○○○○
Simulatio	on II			

Figure: 1000 MonteCarlo iterations of the first row of $\Lambda(\hat{U}\mathcal{O}_* - U)$ with n = d = 1800, under a three component mixture model with both spherical and elliptical covariances within the first component.