

Entrywise Estimation of Singular Vectors of Low-Rank Matrices with Heteroskedasticity and Dependence

Joshua Agterberg

Johns Hopkins University

JSM 2022 Based on a paper with Zachary Lubberts and Carey Priebe

KOD KARD KED KED BE YOUR

[Theoretical Results](#page-19-0)

[Theoretical Results](#page-19-0)

3 [Numerical Example](#page-24-0)

[The Problem](#page-2-0) [Theoretical Results](#page-19-0) Mumerical Example [Conclusion](#page-30-0) [References](#page-35-0)

Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

- 0 Spectral Clustering
- 0 Principal Components Analysis
- \bullet Nonconvex algorithm initializations (tensor SVD, phase retrieval, blind deconvolution)

KOD KARD KED KED BE YOUR

[The Problem](#page-2-0) [Theoretical Results](#page-19-0) Mumerical Example [Conclusion](#page-30-0) [References](#page-35-0)

Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

- Spectral Clustering
- Principal Components Analysis
- 0 Nonconvex algorithm initializations (tensor SVD, phase retrieval, blind deconvolution)

KOD KARD KED KED BE YOUR

Problem

Lots is known about convergence, but less is known about *uncertainty quantification*.

[The Problem](#page-2-0) [Theoretical Results](#page-19-0) Mumerical Example [Conclusion](#page-30-0) [References](#page-35-0)

Motivation: Spectral Methods

Spectral methods are ubiquitous in machine learning and statistics.

- Spectral Clustering
- Principal Components Analysis
- 0 Nonconvex algorithm initializations (tensor SVD, phase retrieval, blind deconvolution)

Problem

Lots is known about convergence, but less is known about *uncertainty quantification*.

Goal

Develop *fine-grained statistical theory* for spectral methods.

Signal Plus Noise Model

Signal Plus Noise Model

Goal: More Precise

Develop *fine-grained statistical theory* for **an estimator of the left singular subspace of the signal matrix.**

KORK ERKER ADAM ADA

Motivation: Spectral Methods

In many problems there is *heteroskedasticity* and *dependence* within each row of the noise.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Motivation: Spectral Methods

In many problems there is *heteroskedasticity* and *dependence* within each row of the noise.

Goal: Even More Precise

Develop *fine-grained statistical theory* for an estimator of the left singular subspace of the signal matrix **in the presence of heteroskedasticity and dependence within each row of the noise matrix.**

KOD KARD KED KED BE YOUR

Goal: Even More Precise

Develop *fine-grained statistical theory* for an estimator of the left singular subspace of the signal matrix **in the presence of heteroskedasticity and dependence within each row of the noise matrix.**

"...the geometric relationship between the signal matrix, the covariance structure of the noise, and the distribution of the errors..."

KORK ERKER ADAM ADA

We observe a low-rank signal matrix corrupted by additive noise:

 $M = \underbrace{M}_{\text{signal}} + \underbrace{E}_{\text{noise}}$. signal noise

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

We observe a low-rank signal matrix corrupted by additive noise:

The signal matrix *M* is assumed to be (low) *r*ank *r* with (thin or compact) singular value decomposition (SVD)

 $M = U \Lambda V^{\top}$

- *U* ∈ O(*n*, *r*) is matrix of leading left singular vectors (its columns *U_i* are orthonormal unit vectors)
- **•** Λ is a diagonal *r* × *r* matrix of singular values $\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0$
- **•** $V \in \mathbb{O}(d, r)$ $V \in \mathbb{O}(d, r)$ $V \in \mathbb{O}(d, r)$ is matrix of leading right sing[ula](#page-12-0)r [v](#page-14-0)[e](#page-11-0)[c](#page-12-0)[to](#page-13-0)r[s](#page-1-0)
• Profession and the service on the service of the service on the service of the s

We observe a low-rank signal matrix corrupted by additive noise:

$$
\widehat{M} = \underbrace{M}_{\text{signal}} + \underbrace{E}_{\text{noise}}.
$$

The noise matrix *E* has

- independent, mean-zero rows of the form $E_{i\cdot} = \Sigma_i^{1/2} Y_i$
- $\sum_j \in \mathbb{R}^{d \times d}$ is a positive semidefinite matrix
- $Y_i \in \mathbb{R}^d$ is a vector with independent (sub)gaussian components with variance one

KORK ERKER ADAM ADA

Goal: Most Precise

Develop *fine-grained statistical theory* for an estimator \hat{U} of the $n \times r$ matrix U of leading left singular vectors of M upon observ- $\mathsf{inq}\ \mathsf{M} + \mathsf{E}$

KOD KARD KED KED BE YOUR

Goal: Most Precise

Develop *fine-grained statistical theory* for an estimator *U*b of the $n \times r$ matrix U of leading left singular vectors of M upon observ- $\mathsf{inq}\ \mathsf{M} + \mathsf{E}$

Problem

When rows of *E* have different covariances (heteroskedasticity), the left singular vectors of $M + E$ can be biased!

KOD KARD KED KED BE YOUR

Goal: Most Precise

Develop *fine-grained statistical theory* for an estimator *U*b of the *n*×*r* matrix *U* of leading left singular vectors of *M* upon observ- $\text{inq } M + E$

Problem

When rows of *E* have different covariances (heteroskedasticity), the left singular vectors of $M + E$ can be biased!

Solution

Use HeteroPCA algorithm of [Zhang et al. \(2022\)](#page-35-1) to *debias* the estimated singular vectors.

HeteroPCA Algorithm [\(Zhang et al., 2022\)](#page-35-1)

Algorithm 1: HeteroPCA Algorithm of [Zhang et al. \(2022\)](#page-35-1)

Input : $N_0 = \widehat{M}\widehat{M}^\top - \text{diag}(\widehat{M}\widehat{M}^\top)$, max number of iterations $T_{\rm max}$ **while** $T < T_{\text{max}}$ do $N_{\mathcal{T}} := \text{SVD}_\mathsf{r}(N_{\mathcal{T}}),$ the best rank r approximation to $N_{\mathcal{T}};$ $N_{\mathcal{T}+1} := N_{\mathcal{T}} - \text{diag}(N_{\mathcal{T}}) + \text{diag}(N_{\mathcal{T}});$ **end Return:** $\hat{U} =$ Left *r* singular vectors of $N_{T_{\text{max}}}$

KOD KOD KED KED E VOOR

[The Problem](#page-2-0) **[Theoretical Results](#page-19-0)** [Numerical Example](#page-24-0) [Conclusion](#page-30-0) [References](#page-35-0)

Asymptotic Normality: *r* fixed

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose some technical and regularity conditions hold, and suppose the signal-to-noise ratio is sufficiently large. Define

 $S^{(i)} := \Lambda^{-1} V^\top \Sigma_i V \Lambda^{-1}$.

Then as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *, there exists a sequence of r* × *r orthogonal matrices* O[∗] *such that*

 $(S^{(i)})^{-1/2} (\hat{U}\mathcal{O}_* - U)_i \to N(0, I_r).$

KOD KARD KED KED BE YOUR

[The Problem](#page-2-0) **[Theoretical Results](#page-19-0)** [Numerical Example](#page-24-0) [Conclusion](#page-30-0) [References](#page-35-0)

Asymptotic Normality: *r* fixed

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose some technical and regularity conditions hold, and suppose the signal-to-noise ratio is sufficiently large. Define

 $S^{(i)} := \Lambda^{-1} V^\top \Sigma_i V \Lambda^{-1}$.

Then as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *, there exists a sequence of r* × *r orthogonal matrices* O[∗] *such that*

 $(S^{(i)})^{-1/2} (\hat{U}\mathcal{O}_* - U)_i \to N(0, I_r).$

Asymptotic covariance of *i*'th row of \hat{U} depends on how *i*'th row of noise matrix *E* interacts with Λ and *V*.

Understanding the Limiting Variance

Corollary [\(Agterberg et al. \(2022\)](#page-35-2))

Under the conditions of Theorem 1, suppose further that $\Sigma_i = \sigma_i^2 I_d$ *(independent noise with equal variance within each row). Then*

$$
(S^{(i)})_{jj} := \frac{\|\Sigma_j^{1/2} V_j\|^2}{\lambda_j^2} = \frac{\sigma_j^2}{\lambda_j^2}.
$$

Then there exists a sequence of orthogonal matrices O[∗] *such that*

$$
\frac{\lambda_j}{\sigma_i}(\widehat{U}\mathcal{O}_*-\mathcal{U})_{ij}\to N(0,1).
$$

KEL KALEYKEN E YAN

Understanding the Limiting Variance

Corollary [\(Agterberg et al. \(2022\)](#page-35-2))

Under the conditions of Theorem 1, suppose further that $\Sigma_i = \sigma_i^2 I_d$ *(independent noise with equal variance within each row). Then*

$$
(S^{(i)})_{jj} := \frac{\|\Sigma_j^{1/2} V_j\|^2}{\lambda_j^2} = \frac{\sigma_j^2}{\lambda_j^2}.
$$

Then there exists a sequence of orthogonal matrices O[∗] *such that*

$$
\frac{\lambda_j}{\sigma_i}(\widehat{U}\mathcal{O}_*-\mathcal{U})_{ij}\to N(0,1).
$$

Asymptotic variance of entries of *j*'th estimated singular vector is proportional to *j*'th singular value.

• Consider

$$
\Sigma_1 := 5V_{.1}V_{.1}^{\top} + 5V_{\theta}V_{\theta}^{\top} + .1I_d
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

where V_{θ} satisfies $V_{\theta}^{\top}V_{\cdot 2} = \theta$ and is orthogonal to $V_{\cdot 1}$

• Consider

$$
\Sigma_1 := 5V_{.1}V_{.1}^\top + 5V_{\theta}V_{\theta}^\top + .1I_d
$$

where V_{θ} satisfies $V_{\theta}^{\top}V_{\cdot 2} = \theta$ and is orthogonal to $V_{\cdot 1}$

Theory suggests that $\Lambda(\widetilde{U}\mathcal{O}_* - U)_1 \approx \mathcal{N}(0, V^\top \Sigma_1 V)$ and hence

$$
V^{\top} \Sigma_1 V = V^{\top} \left(5V_{.1}V_{.1}^{\top} + 5V_{\theta}V_{\theta}^{\top} + .1I_d \right) V
$$

$$
= \begin{pmatrix} 5 & 0 \\ 0 & 5\theta \end{pmatrix} + \begin{pmatrix} .1 & 0 \\ 0 & .1 \end{pmatrix}
$$

KORKARA KERKER DAGA

o Consider

$$
\Sigma_1 := 5V_{\cdot 1}V_{\cdot 1}^{\top} + 5V_{\theta}V_{\theta}^{\top} + .1I_d
$$

where V_{θ} satisfies $V_{\theta}^{\top}V_{\cdot 2} = \theta$ and is orthogonal to $V_{\cdot 1}$

Theory suggests that $\Lambda(\widetilde{U}\mathcal{O}_* - U)_1 \approx \mathcal{N}(0, V^\top \Sigma_1 V)$ and hence

$$
V^{\top} \Sigma_1 V = V^{\top} \left(5V_{.1}V_{.1}^{\top} + 5V_{\theta}V_{\theta}^{\top} + .1I_d \right) V
$$

$$
= \begin{pmatrix} 5 & 0 \\ 0 & 5\theta \end{pmatrix} + \begin{pmatrix} .1 & 0 \\ 0 & .1 \end{pmatrix}
$$

KORKARA KERKER DAGA

 \bullet So decreasing θ decreases the limiting variance along the second dimension

Figure: 1000 MonteCarlo iterations of the first row of $\Lambda(\widehat{U}\mathcal{O}_* - U)$ with $n = d = 1800$, where the covariance changes according to previous slide.

> $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$ 2990

Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of *M* = *U*Λ*V* [⊤] in the presence of *heteroskedasticity and dependence*

KORKARYKERKE PORCH

- Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of *M* = *U*Λ*V* [⊤] in the presence of *heteroskedasticity and dependence*
- Our estimator is based on applying the HeteroPCA algorithm of [Zhang et al. \(2022\)](#page-35-1) to the sample gram matrix $\widehat{M}\widehat{M}^{\top}$

KORK ERKER ADAM ADA

- Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of *M* = *U*Λ*V* [⊤] in the presence of *heteroskedasticity and dependence*
- Our estimator is based on applying the HeteroPCA algorithm of [Zhang et al. \(2022\)](#page-35-1) to the sample gram matrix $\widehat{M}\widehat{M}^{\top}$
- We prove limiting entrywise asymptotic normality results for our estimator in a high-dimensional regime showcasing the geometric relationship between the signal matrix, the covariance structure of the noise, and the limiting distribution of the errors via the limiting covariance matrix

 $S^{(i)} := \Lambda^{-1} V^\top \Sigma_i V \Lambda^{-1}.$

KORKAR KERKER E VOOR

- Wanted to develop *fine-grained statistical theory* for an estimator of the left singular vectors of *M* = *U*Λ*V* [⊤] in the presence of *heteroskedasticity and dependence*
- Our estimator is based on applying the HeteroPCA algorithm of [Zhang et al. \(2022\)](#page-35-1) to the sample gram matrix $\widehat{M}\widehat{M}^{\top}$
- We prove limiting entrywise asymptotic normality results for our estimator in a high-dimensional regime showcasing the geometric relationship between the signal matrix, the covariance structure of the noise, and the limiting distribution of the errors via the limiting covariance matrix

 $S^{(i)} := \Lambda^{-1} V^\top \Sigma_i V \Lambda^{-1}.$

Results in paper stated as Berry-Esseen Theorems (with *r* allowed to grow), and we show we can estimate limiting covariance in high-dimensional mixture models, yielding asymptotically valid confidence intervals.**YO A GERRITH A SHOP**

- Joshua Agterberg, Zachary Lubberts, and Carey E. Priebe. Entrywise Estimation of Singular Vectors of Low-Rank Matrices With Heteroskedasticity and Dependence. *IEEE Transactions on Information Theory*, 68(7):4618–4650, July 2022. ISSN 1557-9654. doi: 10.1109/TIT.2022.3159085.
- Anru R. Zhang, T. Tony Cai, and Yihong Wu. Heteroskedastic PCA: Algorithm, optimality, and applications. *The Annals of Statistics*, 50(1):53–80, February 2022. ISSN 0090-5364, 2168-8966. doi: 10.1214/21-AOS2074.

KORKAR KERKER E VOOR

Thank you!

Asymptotic Normality: *r* fixed

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose some technical and regularity conditions hold. Suppose that

$$
\max\left\{\frac{\log(d)}{\text{SNR}},\max_{j}\frac{\|\Sigma_{j}^{1/2}V_{.j}\|_{3}^{3}}{\|\Sigma_{j}^{1/2}V_{.j}\|^{3}}\right\}\rightarrow 0
$$

as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *. Define*

 $S^{(i)}$ = $\Lambda^{-1}V^{\top}\Sigma_iV\Lambda^{-1}$.

Then there exists a sequence of r × *r orthogonal matrices* O[∗] *such that*

$$
(S^{(i)})^{-1/2}(\widehat{U}\mathcal{O}_* - U)_{i.} \to N(0, I_r).
$$

KEL KALEYKEN E YAN

Asymptotic Normality: *r* fixed

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose some technical and regularity conditions hold. Suppose that

$$
\max\left\{\frac{\log(d)}{\text{SNR}},\max_{j}\frac{\|\Sigma_{j}^{1/2}V_{.j}\|_{3}^{3}}{\|\Sigma_{j}^{1/2}V_{.j}\|^{3}}\right\}\rightarrow 0
$$

as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *. Define*

 $S^{(i)}$ = $\Lambda^{-1}V^{\top}\Sigma_iV\Lambda^{-1}$.

Then there exists a sequence of r × *r orthogonal matrices* O[∗] *such that*

$$
(S^{(i)})^{-1/2}(\widehat{U}\mathcal{O}_* - U)_{i.} \to N(0, I_r).
$$

Asymptotic covariance of *ⁱ*'th row of *^U*^b depends on how ^Σ*ⁱ* interacts with Λ and *V*.

• We require that

$$
\max \left\{ \frac{\log(d)}{\text{SNR}}, \max_{j} \frac{\|\Sigma_{j}^{1/2} V_{.j}\|_{3}^{3}}{\|\Sigma_{j}^{1/2} V_{.j}\|_{3}^{3}} \right\} \rightarrow 0
$$

• We require that

イロトメ 倒 トメ 君 トメ 君 トー

 \equiv 990

• We require that

Special case: $\Sigma_i \equiv I_d$, $V_{\cdot j} = \frac{\pm 1}{\sqrt{d}}$ *d* (most *incoherent* vector). Then

$$
\frac{\|\Sigma_i^{1/2}V_{.j}\|_3^3}{\|\Sigma_i^{1/2}V_{.j}\|_3^3} = \frac{\|V_{.j}\|_3^3}{\|V_{.j}\|^3} = \frac{\sum_{l=1}^d \left(\frac{1}{\sqrt{d}}\right)^3}{1} = \frac{1}{\sqrt{d}}
$$

KOD KARD KED KED BE YOUR

Asymptotic Normality: *r* growing

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose some technical and regularity conditions hold. Suppose that

$$
\max\left\{\frac{r\log(d)}{\sqrt{n}},\frac{r\log(d)}{\text{SNR}},\frac{\|\Sigma_i^{1/2}V_{.j}\|_3^3}{\|\Sigma_i^{1/2}V_{.j}\|^3}\right\}\rightarrow 0
$$

as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *. Define*

$$
\sigma_{ij}^2 := \frac{\|\Sigma_j^{1/2}V_{.j}\|^2}{\lambda_j^2}.
$$

Then there exists a sequence of orthogonal matrices O[∗] *such that*

$$
\frac{1}{\sigma_{ij}}\big(\widehat{U}\mathcal{O}_*-\boldsymbol{U}\big)_{ij}\to N(0,1).
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト \Rightarrow 2990

Singular vectors of $\widehat{M} =$ Eigenvectors of $\widehat{M}\widehat{M}^{\top}$ [≈] Eigenvectors of ^E(*M*^b *^M*^b [⊤]) $=$ Eigenvectors of $MM^T + D$, where D_{ii} = Trace(Σ_i).

KORK ERKER ADAM ADA

Singular vectors of
$$
\widehat{M}
$$
 = Eigenvectors of $\widehat{M}\widehat{M}^{\top}$
\n \approx Eigenvectors of $\mathbb{E}(\widehat{M}\widehat{M}^{\top})$
\n= Eigenvectors of $M M^{\top} + D$,
\nwhere $D_{ij} = \text{Trace}(\Sigma_j)$.

Problem

If Σ*ⁱ* 's are different (i.e. *heteroskedastic*), then the singular vectors of *M*b are approximating a *deterministic diagonal perturbation* of *MM*⊤.

KORKARA KERKER SAGA

■ Could delete the diagonal of $\widehat{M}\widehat{M}^{\top}$ and take eigenvectors of that

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- Could delete the diagonal of $\widehat{M}\widehat{M}$ [™] and take eigenvectors of that
- Still biased! Then this approximates the eigenvectors of the matrix

 $MM^T - diag(MM^T) \neq MM^T$

KORK ERKER ADAM ADA

- Could delete the diagonal of $\widehat{M}\widehat{M}$ [†] and take eigenvectors of that
- Still biased! Then this approximates the eigenvectors of the matrix

$$
MM^{\top} - \text{diag}(MM^{\top}) \neq MM^{\top}
$$

- Just deleting the diagonal results in an error that does not *scale with the noise*
- Our idea: use existing HeteroPCA algorithm of [Zhang et al.](#page-35-1) [\(2022\)](#page-35-1) to *impute* the diagonals

- Measure of noise: $\sigma^2 := \max_i ||\Sigma_i||$
- Measure of signal: λ_r = smallest nonzero singular value of *M*

KORKARA KERKER DAGA

- Measure of noise: $\sigma^2 := \max_i ||\Sigma_i||$
- Measure of signal: λ_r = smallest nonzero singular value of *M*
- Define the signal-to-noise ratio:

$$
SNR := \frac{\lambda_r}{\sigma \sqrt{rd}}.
$$

KORK ERKER ADAM ADA

- Measure of noise: $\sigma^2 := \max_i ||\Sigma_i||$
- Measure of signal: λ_r = smallest nonzero singular value of *M*
- Define the signal-to-noise ratio:

$$
SNR := \frac{\lambda_r}{\sigma \sqrt{rd}}.
$$

KORKARA KERKER DAGA

In the homoskedastic setting, $SNR \rightarrow \infty$ is required for consistency when $d \approx n$ with $n, d \to \infty$.

- Measure of noise: $\sigma^2 := \max_i ||\Sigma_i||$
- Measure of signal: λ_r = smallest nonzero singular value of *M*
- Define the signal-to-noise ratio:

$$
SNR := \frac{\lambda_r}{\sigma \sqrt{rd}}.
$$

KORK ERKER ADAM ADA

In the homoskedastic setting, $SNR \rightarrow \infty$ is required for consistency when $d \approx n$ with $n, d \to \infty$.

Condition number of *M*, $\kappa := \frac{\lambda_1}{\lambda_2}$ λ*r*

Covariance Condition Number:

$$
\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\Sigma_i^{1/2} V_{.j}\|}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Covariance Condition Number:

$$
\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\Sigma_i^{1/2} V_{.j}\|}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace *V*

Covariance Condition Number:

$$
\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\Sigma_i^{1/2} V_{.j}\|}
$$

KOD CONTRACT A BOAR KOD A CO

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace *V*

• Consider the following special case:

Covariance Condition Number:

$$
\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\Sigma_i^{1/2} V_{.j}\|}
$$

KOD KARD KED KED BE YOUR

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace *V*

- Consider the following special case:
	- $\sum_i \equiv I_d$ for all *i* (or any multiple)
	- Then $\kappa_{\sigma} \equiv 1$

Covariance Condition Number:

$$
\kappa_{\sigma} := \max_{i,j} \frac{\sigma}{\|\Sigma_i^{1/2} V_{.j}\|}
$$

Quantifies the geometric relationship with the covariance structure of the noise on the right singular subspace *V*

- Consider the following special case:
	- $\sum_i \equiv I_d$ for all *i* (or any multiple)
	- Then $\kappa_{\sigma} \equiv 1$
- κ_σ only blows up when $\| \Sigma_i^{1/2} V_{\cdot j} \|$ is very small relative to the overall noise σ (nondegeneracy condition)

KORKAR KERKER E VOOR

Incoherence parameter:

• Incoherence parameter μ_0 of the matrix *M*:

$$
\max_{i} \|U_{i\cdot}\|, \|V_{i\cdot}\| \leq \mu_0 \sqrt{\frac{r}{n}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Measures "spikiness" of *M*

Incoherence parameter:

• Incoherence parameter μ_0 of the matrix *M*:

$$
\max_{i} \|U_{i\cdot}\|, \|V_{i\cdot}\| \leq \mu_0 \sqrt{\frac{r}{n}}
$$

Measures "spikiness" of *M* Examples (consider $n = d$ for simplicity):

$$
\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}
$$
 versus
$$
\begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}
$$

KOD KARD KED KED BE YOUR

Incoherence parameter:

• Incoherence parameter μ_0 of the matrix *M*:

$$
\max_{i} \|U_{i\cdot}\|, \|V_{i\cdot}\| \leq \mu_0 \sqrt{\frac{r}{n}}
$$

Measures "spikiness" of *M* Examples (consider $n = d$ for simplicity):

$$
\underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}}_{\mu_0=\sqrt{\frac{n}{r}}} \text{ versus } \underbrace{\begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}}_{\mu_0=1}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Asymptotic Normality: *r* fixed

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose that $κ$, $μ_0$, and $κ_σ$ are bounded, and that r is fixed. Suppose *that*

$$
\max\left\{\frac{\log(d)}{\text{SNR}},\max_{j}\frac{\|\Sigma_{j}^{1/2}V_{.j}\|_{3}^{3}}{\|\Sigma_{j}^{1/2}V_{.j}\|^{3}}\right\}\rightarrow 0
$$

as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *. Define*

 $S^{(i)}$ = $\Lambda^{-1}V^{\top}\Sigma_iV\Lambda^{-1}$.

Then there exists a sequence of orthogonal matrices O[∗] *such that*

$$
(S^{(i)})^{-1/2}(\widehat{U}\mathcal{O}_* - U)_{i.} \rightarrow N(0, I_r).
$$

KOD KOD KED KED E VOOR

Asymptotic Normality: *r* growing

Theorem [\(Agterberg et al. \(2022\)](#page-35-2))

Suppose that $κ$, $μ_0$, and $κ_σ$ are bounded. Suppose that

$$
\max\left\{\frac{r\log(d)}{\sqrt{n}},\frac{r\log(d)}{\text{SNR}},\frac{\|\Sigma_i^{1/2}V_j\|_3^3}{\|\Sigma_i^{1/2}V_j\|^3}\right\}\to 0
$$

as n, d $\rightarrow \infty$ *, with d* $\geq n \geq \log(d)$ *. Define*

$$
\sigma_{ij}^2 := \frac{\|\Sigma_j^{1/2}V_{.j}\|^2}{\lambda_j^2}.
$$

Then there exists a sequence of orthogonal matrices O[∗] *such that*

$$
\frac{1}{\sigma_{ij}}\big(\widehat{U}\mathcal{O}_*-\boldsymbol{U}\big)_{ij}\to N(0,1).
$$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$ 2990

Simulation I

Figure: 1000 MonteCarlo iterations of the first row of $\hat{U}\mathcal{O}_* - U$ with $n = d = 1800$, under a three component mixture model with spherical (identity) covariances within each component.

Simulation II

Figure: 1000 MonteCarlo iterations of the first row of $\Lambda(\widehat{U}\mathcal{O}_* - U)$ with $n = d = 1800$, under a three component mixture model with both spherical and elliptical covariances within the first component.