
Reading Group Notes

Benjamin Draves

July 21, 2020

1 Eigen-Scaling Random Dot Product Graph

In Draves and Sussman (2020) we analyze the joint embedding of multiple networks over a common vertex
set, V. Suppose n := |V| and we observe m networks over this vertex set. We adopt a Random Dot Product
Graph (RDPG) framework for the analysis of these embedding techniques.

To jointly model these networks, we propose a joint latent position model we entitled the Eigen-Scaling
Random Dot Product Graph (ESRDPG). Under the ESRDPG, we assume that each vertex v ∈ V is associated
with a latent vector Xv ∈ Rd drawn i.i.d. from an inner product distribution F over an appropriate subset of
Rd. To capture network level heterogeneity, we associate each network with a diagonal matrix C(g) for each
g ∈ [m]. From here, we assume the probability that vertex i and j share an edge in graph g ∈ [m] is given

by P
(g)
ij = xT

i C
(g)xi. In essence, the weighting matrices alter the kernel for each graph. Finally, conditional

on the latent position X, the entries of random adjacency matrices are Bernoulli random variables specified

by A
(g)
ij |Xi,Xj ∼ Bern(XT

i C
(g)Xj).

Assumptions on this joint graph distribution are made to simplify analysis. Some assumptions are more
restrictive than others, which I’ll comment on below.

1. mini∈[d] maxg∈[m] C
(g)
ii > 0 : This ensures that the weighting matrices aren’t fully ‘removing’ a dimen-

sion of the latent space. If for some i ∈ [d], C
(g)
ii = 0 for all g ∈ [m], then the following analysis would

hold just with results written in Rd−1.

2. C(g) ≥ 0: This allows us to focus on the embedding of the positive-definite part of the adjacency
matrices. We’ve recently extended these into embeddings that utilize both the high and low end of the
spectrum, but the analysis becomes more complex: see Rubin-Delanchy et al. (2017).

3. ∆ = E[yyT ] for y ∼ F is diagonal: This enables an analytic computation of the bias.

2 Joint Embedding Techniques

In this work, we focus on the estimation of the scaled latent positions, L ∈ Rnm×d given by

L =


X
√
C(1)

X
√
C(2)

...

X
√
C(m)

 .

For ease of notation, let L(g) = X
√
C(g) We analyze estimators by their ability to recover row-wise estimates

of L of the form
√
C(g)Xi. We consider the following four estimators.
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1. Adjacency Spectral Embedding (ASE): Ignore the shared structure between graphs. Estimate L(g)

with ASE(A(g), d) = UA(g)S
1/2

A(g) . Analyzed in Sussman et al. (2012) and Athreya et al. (2016).

2. Mean Embedding (Abar): Ignore the differences between graphs and estimate all L(g) with ASE(Ā, d) =

UĀS
1/2

Ā
where Ā = m−1

∑m
g=1 A

(g). Analyzed in Tang et al. (2019).

3. Omnibus Embedding (Omni): Leverage joint structure by simultaneously embedding the adjacency

matrices to arrive at a joint estimate matrix L̂ = ASE(Ã, d) ∈ Rnm×d where Ã ∈ Rnm×nm is the
omnibus matrix of the adjacency matrix. The i.i.d. case (i.e. C(g) = I for all g ∈ [m]) was analyzed in
Levin et al. (2017). We provide the analysis of these estimates under the ESRDPG below.

4. Mean Omnibus Embedding (Omnibar): Since the omnibus embedding provides m different estimates,

we can combine these estimates to produce a global estimate of the latent position. Let X̂(g) be g-th
n× d block of L̂ and define X̄ = m−1

∑m
g=1 X̂

(g). Then X̄ is the Omnibar estimator for each L(g).

A stated goal of this work is to understand the (dis)advantages of each embedding technique stated above.
We choose to first compare these estimators with respect to mean square error when estimating the rows
of L. Several numerical studies showed that Omni was often the most robust estimator in finite samples
(see Figures 2, 4). In order to complete the comparison rigorously, we needed to establish the asymptotic
properties of the Omni and Omnibar estimators under the ESRDPG. This is the content of our Main Results.

3 Main Results

3.1 Takeaways

There are two theorems that establish the fist and second moment properties of the omnibus embedding
estimate under the ESRDPG. Theorem 1 reveals that the omnibus embedding is a biased estimator of L and
the corresponding residual term concentrates at a rate of O(m3/2n−1/2 log nm). Theorem 2 reveals that the

rows of L̂ behave normally around this biased term when scaled by
√
n. This bias and variance term is also

a function of each latent position. Figure 3 further highlights this point.

Together these results suggests there is a bias-variance tradeoff inherent in the omnibus embedding. The
numerical examples throughout further support that the bias is offset by a sizable variance reduction in finite
samples. This tradeoff typically makes the omnibus embedding the most robust estimator with respect to
MSE in experimental settings.

These results, as well as identifying the asymptotic covariance between rows of L̂ (Corollary 1), allow for
a formal comparison of the MSE of the four embedding estimators (Table 1). The ASE estimator is the only
unbiased estimator while the other three estimators exhibit coordinate-scaling type biases. The variance
terms are much more difficult to interpret but can be loosely interpreted as weighted - linear combinations
of individual graph variances. For simple models, these explicit expressions can enable determination of the
best MSE estimator of the estimators considered.

3.2 Asymptotic Expansion & Comments on Proof

Let Ã and P̃ be the omnibus matrix of {A(g)}mg=1 and {P(g)}mg=1, respectively. Levin et al. (2017) show

that Ẑ = ASE(Ã, d) concentrates around Z = ASE(P̃, d) and the rows of
√
n(Ẑ−Z) behave normally (after

appropriate rotation). In the i.i.d. case of Levin et al. (2017), Z can be written directly in terms of the
latent positions as there exists W ∈ Od such that ZW = 1m ⊗X.

Under the ESRDPG, we needed to do more work to relate Z back to the latent positions X. To that
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end, consider the following expansion of P̃

P̃ = (Im×m ⊗X)C̃(Im×m ⊗X)T

where C̃ is the omnibus matrix of {C(g)}mg=1. We show that C̃, and by extension P̃, is rank 2d with d

positive and d negative eigenvalues. Let S = ASE(C̃, d) and let it’s g-th d× d block be written as S(g) (See
Definition 3.1). Then, by letting LS = (Im×m ⊗X)S we have

P̃ = [(Im×m ⊗X)S][(Im×m ⊗X)S]T + P̃− = LSL
T
S + P̃−

where P̃− is the negative definite part of P̃. From here we can directly relate Z to LS (see Lemma 2). These
results suggest that we can extend the results of Levin et al. (2017) by considering the asymopitic expansion
(See Appendix A)

L̂− L = (L̂− LS)︸ ︷︷ ︸
2→∞, CLT

+ (LS − L)︸ ︷︷ ︸
Bias

.

The development of the residual bounds and the central limit theorem follow closely with that of Levin et al.
(2017). The only slight difference is the eigenvalue rate of growth of P̃ (see Lemma 4). In most work on
RDPG CLTs, λd(P) = Θ(n). Under i.i.d. latent positions, λd(P̃) = Θ(nm). Under the ESRDPG, however,
it is only guaranteed that λd(P̃) = ω(

√
mn). This slower rate occurs in very few models (which are discussed

in the Section 5), but results in the additional factor of m in the residual bound given in Theorem 1.

4 Statistical Consequences

Having established this Bias-Variance Tradeoff, we then turned to analyzing its ramifications in subsequent
inference procedures. We chose to analyze the following inference problems.

1. Comm. Detection: Recover community labels within each graph using GMM applied to the latent
position estimates provided by methods (1-4).

2. Multiplex Comm. Detection: Regarding the networks as describing a multiplex network, recover
community labels shared across layers using the omnibus embedding estimates.

3. Two Graph Hypothesis Testing: Test if two graphs share the same set of latent positions.

Through several numerical studies, we show that GMM applied to the omnibus and omnibar estimates
are competitive with the GMM applied to the ASE and Abar estimates with respect to missclassification rate
under the Comm. Detection. We then show that the GMM applied to the Omnibar estimates is competitive
with other Multiplex Comm. Detection methods that utilize different joint embedding techniques (Wang
et al. 2017; Arroyo et al. 2019; Nielsen and Witten 2018). These results suggest that the bias does not
directly harm, and may even aid, in consequent inference tasks. See Section 4.2 for a full discussion of these
problems.

In Section 4.3 we develop a pivotal test statistic W that tests the hypothesis H0 : C(1) = C(2). The
statistic is reminiscent of a Hotelling’s T 2 statistic and utilizes the distributional results established in the
Central Limit Theorem. Under H0, this statistic is approximately distributed W

·∼ χ2
nd. We compare

this new proposed statistic to the semi-parameteric statistic, T , proposed in Levin et al. (2017). As W
incorporates covariance corrections (i.e. Mahalanobis distances) and T does not (i.e. Euclidean distance)
we anticipate W will achieve higher power. In a simulation study, we find W does achieve higher power.
However, its estimate in practice Ŵ is over-powered under H0. Its level-corrected version W̃ achieves lower
power than T for small networks sizes but achieves higher power for moderate network sizes (n ≥ 100).
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