Asymptotics and Statistical Inference in High-Dimensional Low-Rank Matrix Models

Joshua Agterberg

February 2023

High-Dimensional Low-Rank Matrix Models 000000000000000

Collaborators

Outline

(1) High-Dimensional Low-Rank Matrix Models
(2) Asymptotics
(3) Statistical Inference
4) Contributions

Outline

(1) High-Dimensional Low-Rank Matrix Models

(3) Statistical Inference

4 Contributions

High-Dimensional Models

$$
\begin{aligned}
\underbrace{x_{i}}_{\text {observation }} & =\underbrace{\mu}_{\text {signal }}+\underbrace{\sigma \varepsilon_{i}}_{\text {noise }} ; \quad i=1, \ldots, n \\
\mu & \in \mathbb{R}^{d} \quad \sigma>0 \\
\varepsilon_{i} & \text { is mean-zero isotropic noise. }
\end{aligned}
$$

High-Dimensional Models

$$
\begin{aligned}
\underbrace{x_{i}}_{\text {observation }} & =\underbrace{\mu}_{\text {signal }}+\underbrace{\sigma \varepsilon_{i}}_{\text {noise }} ; \quad i=1, \ldots, n \\
\mu & \in \mathbb{R}^{d} \quad \sigma>0 \\
\varepsilon_{i} & \text { is mean-zero isotropic noise. }
\end{aligned}
$$

- Easy to check:

$$
\mathbb{E}\|\bar{x}-\mu\|^{2}=\sigma^{2} \frac{d}{n}
$$

High-Dimensional Models

$$
\begin{aligned}
\underbrace{x_{i}}_{\text {observation }} & =\underbrace{\mu}_{\text {signal }}+\underbrace{\sigma \varepsilon_{i}}_{\text {noise }} ; \quad i=1, \ldots, n ; \\
\mu & \in \mathbb{R}^{d} \quad \sigma>0 \\
\varepsilon_{i} & \text { is mean-zero isotropic noise. }
\end{aligned}
$$

- Easy to check:

$$
\mathbb{E}\|\bar{x}-\mu\|^{2}=\sigma^{2} \frac{d}{n}
$$

- Can show there are matching lower bounds over all possible estimators of μ

High-Dimensional Models

$$
\begin{aligned}
\underbrace{x_{i}}_{\text {observation }} & =\underbrace{\mu}_{\text {signal }}+\underbrace{\sigma \varepsilon_{i}}_{\text {noise }} ; \quad i=1, \ldots, n \\
\mu & \in \mathbb{R}^{d} \quad \sigma>0 \\
\varepsilon_{i} & \text { is mean-zero isotropic noise. }
\end{aligned}
$$

- Easy to check:

$$
\mathbb{E}\|\bar{x}-\mu\|^{2}=\sigma^{2} \frac{d}{n}
$$

- Can show there are matching lower bounds over all possible estimators of μ

Problem

With fixed σ, we need to have $\frac{d}{n} \rightarrow 0$ for consistency.

High-Dimensional Models

Given these "no free lunch" guarantees, what can help us in the high-dimensional setting? Essentially, our only hope is that the data is endowed with some form of low-dimensional structure, one which makes it simpler than the high-dimensional view might suggest. Much of high-dimensional statistics involves constructing models of high-dimensional phenomena that involve some implicit form of low-dimensional structure, and then studying the statistical and computational gains afforded by exploiting this structure. In order to illustrate, let us

Low-Dimensional Structure via Sparsity

Assume that μ only has s nonzero entries, with $s \ll d$.

Low-Dimensional Structure via Sparsity

Assume that μ only has s nonzero entries, with $s \ll d$.

Low-Dimensional Structure via Sparsity

Assume that μ only has s nonzero entries, with $s \ll d$.

- Can show there is an estimator $\bar{x}^{(\text {sparsity })}$ satisfying

$$
\mathbb{E}\left\|\bar{x}^{(\text {sparsity })}-\mu\right\|^{2} \lesssim \sigma^{2} \frac{s \log (e d / s)}{n}
$$

Low-Dimensional Structure via Sparsity

Assume that μ only has s nonzero entries, with $s \ll d$.

- Can show there is an estimator $\bar{x}^{(\text {sparsity })}$ satisfying

$$
\mathbb{E}\left\|\bar{x}^{(\text {sparsity })}-\mu\right\|^{2} \lesssim \sigma^{2} \frac{s \log (e d / s)}{n}
$$

- Similar lower bound over all s-sparse vectors μ.

Low-Dimensional Structure via Sparsity

Assume that μ only has s nonzero entries, with $s \ll d$.

- Can show there is an estimator $\bar{x}^{(\text {sparsity })}$ satisfying

$$
\mathbb{E}\left\|\bar{x}^{(\text {sparsity })}-\mu\right\|^{2} \lesssim \sigma^{2} \frac{s \log (e d / s)}{n}
$$

- Similar lower bound over all s-sparse vectors μ.

Key Takeaway

Imposing low-dimensional structural assumptions can maintain consistency in high dimensions.

High-Dimensional Matrix Models

Data doesn't have to be Euclidean!

High-Dimensional Matrix Models

Data doesn't have to be Euclidean!

- Network data

High-Dimensional Matrix Models

Data doesn't have to be Euclidean!

- Network data

- Brain image data

High-Dimensional Matrix Models

Data doesn't have to be Euclidean!

- Network data

- Matrix time series
$\left.\begin{array}{l}\text { Revenuet } \\ \text { Assetst } \\ \text { Dividends pershare } t\end{array} \quad \begin{array}{cccc}\text { Apple } & \text { Twitter } & \text { Tesla } & \cdots \\ X_{11}^{(t)} & X_{12}^{(t)} & X_{13}^{(t)} & \cdots \\ X_{21}^{(t)} & X_{22}^{(t)} & X_{23}^{(t)} & \cdots \\ X_{31}^{(t)} & X_{32}^{(t)} & X_{33}^{(t)} & \cdots \\ \cdots & & & \\ \cdots & \cdots & \ddots\end{array}\right)$
- Brain image data

High-Dimensional Matrix Models

Data doesn't have to be Euclidean!

- Network data

- Brain image data

- Matrix time series

	Apple	Twitter	Tesla	. .
Revenue ${ }_{t}$	$\left(X_{11}^{(t)}\right.$	$X_{12}^{(t)}$	$X_{13}^{(t)}$.
Assetst	$X_{21}^{(t)}$	$X_{22}^{(t)}$	$X_{23}^{(t)}$	\cdots
Dividends per share ${ }_{t}$	$X_{31}^{(t)}$	$X_{32}^{(t)}$	$X_{33}^{(t)}$	\cdots
\square	(. .	\cdots	. .	$\because)$

- Hypergraph data

High-Dimensional Low-Rank Matrix Models

Ansatz

By imposing low-dimensional structural assumptions (lowrankedess), we can maintain consistency and perform valid inference in high dimensions

A Canonical Model

A Canonical Model

Canonical Matrix Denoising Model

$$
\underbrace{\widehat{\widehat{\mathbf{S}}}}_{\text {observation }}=\underbrace{\mathbf{S}}_{\text {signal }}+\underbrace{\mathrm{N}}_{\text {notse }} \in \mathbb{R}^{n \times n} ;
$$

S is low-rank and symmetric;
N satisfies $\mathbb{E N}_{i j}^{2}=\sigma^{2}$.

High-Dimensional Mixture Model

High-Dimensional Mixture Model

High-Dimensional Mixture Model

$$
X_{i}=\mu_{z(i)}+Y_{i} \in \mathbb{R}^{d}, \quad 1 \leq i \leq n ;
$$

$z(i)$ is the membership of the i 'th observation;
μ_{k} are the K different means;
$\mathbb{E} Y_{i}=0$.

High-Dimensional Mixture Model

High-Dimensional Mixture Model

$$
X_{i}=\mu_{z(i)}+Y_{i} \quad \in \mathbb{R}^{d}, \quad 1 \leq i \leq n
$$

$z(i)$ is the membership of the i^{\prime} th observation;
μ_{k} are the K different means;
$\mathbb{E} Y_{i}=0$.

Corresponding Low-Rank Matrix Model

$$
\mathbf{X}=\underbrace{\left(\begin{array}{c}
\mu_{z(1)} \\
\vdots \\
\mu_{z(n)}
\end{array}\right)}_{\text {Low-Rank Matrix }}+\mathrm{Y}
$$

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis

Estimate leading eigenvectors of covariance:

$$
\begin{aligned}
& X_{i}=\boldsymbol{\Sigma}^{1 / 2} Y_{i} \quad \in \mathbb{R}^{d}, \quad 1 \leq i \leq n ; \\
& \mathbb{E} Y_{i}=0 ; \quad \mathbb{E} Y_{i} Y_{i}^{\top}=\mathbf{I}_{d}
\end{aligned}
$$

Principal Component Analysis

Principal Component Analysis

Estimate leading eigenvectors of covariance:

$$
\begin{aligned}
& X_{i}=\boldsymbol{\Sigma}^{1 / 2} Y_{i} \quad \in \mathbb{R}^{d}, \quad 1 \leq i \leq n ; \\
& \mathbb{E} Y_{i}=0 ; \quad \mathbb{E} Y_{i} Y_{i}^{\top}=\mathbf{I}_{d}
\end{aligned}
$$

Corresponding Low-Rank Matrix Model

$$
\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top}=\underbrace{\boldsymbol{\Sigma}_{0}}_{\text {Low-rank matrix }}+\underbrace{\widehat{\boldsymbol{\Sigma}}-\boldsymbol{\Sigma}_{0}}_{\text {"noise" }}
$$

Network Analysis

Network Analysis

Network Analysis

Network Analysis

Statistical Network Analysis

$$
\mathbf{A}=\underbrace{\mathbf{P}}_{\text {Probability Matrix }}+\underbrace{\mathrm{E}}_{\text {Bernoulli noise }} \in\{0,1\}^{n \times n} ;
$$

Tensor Data Analysis

Observation

Tensor Data Analysis

Tensor Data Analysis

$$
\begin{aligned}
& \underbrace{\widehat{\mathcal{T}}}_{\text {observation }}=\underbrace{\mathcal{T}}_{\text {signal }}+\underbrace{\mathcal{Z}}_{\text {noise }} ; \\
& \mathcal{T} \text { is Tucker low-rank; } \\
& \mathbb{E} \mathcal{Z}_{i j k}=0 ; \quad \mathbb{E} \mathcal{Z}_{i j k}^{2} \leq \sigma^{2}
\end{aligned}
$$

Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular vectors, or related quantities that contain important information.

Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular vectors, or related quantities that contain important information.

Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular vectors, or related quantities that contain important information.

This dissertation:

Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular vectors, or related quantities that contain important information.

This dissertation:

- Study eigenvector/singular vector rates of convergence via fine-grained bounds;

Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular vectors, or related quantities that contain important information.

This dissertation:

- Study eigenvector/singular vector rates of convergence via fine-grained bounds;
- Establish asymptotic expansions and limit theorems;

Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular vectors, or related quantities that contain important information.

This dissertation:

- Study eigenvector/singular vector rates of convergence via fine-grained bounds;
- Establish asymptotic expansions and limit theorems;
- Design principled inference procedures.

Outline

(1) High-Dimensional Low-Rank Matrix Models

(2) Asymptotics

3 Statistical Inference
4) Contributions

Asymptotics

Why asymptotic statistics? The use of asymptotic approximations is twofold. First, they enable us to find approximate tests and confidence regions. Second, approximations can be used theoretically to study the quality (efficiency) of statistical procedures.

Consistency

5.2 CONSISTENCY

5.2.1 Plug-In Estimates and MLEs in Exponential Family Models

Suppose that we have a sample X_{1}, \ldots, X_{n} from $P_{\boldsymbol{\theta}}$ where $\boldsymbol{\theta} \in \Theta$ and want to estimate a real or vector $q(\theta)$. The least we can ask of our estimate $\widehat{q}_{n}\left(X_{1}, \ldots, X_{n}\right)$ is that as $n \rightarrow \infty, \hat{q}_{n} \xrightarrow{P} q(\theta)$ for all θ. That is, in accordance with (A.14.1) and (B.7.1), for all $\boldsymbol{\theta} \in \Theta, \epsilon>0$,

$$
\begin{equation*}
P_{\boldsymbol{\theta}}\left[\left|\widehat{q}_{n}\left(X_{1}, \ldots, X_{n}\right)-q(\boldsymbol{\theta})\right| \geq \epsilon\right] \rightarrow 0 . \tag{5.2.1}
\end{equation*}
$$

where $|\cdot|$ denotes Euclidean distance. A stronger requirement is

$$
\begin{equation*}
\sup _{\boldsymbol{\theta}}\left\{P_{\boldsymbol{\theta}}\left[\left|\widehat{q}_{n}\left(X_{1}, \ldots, X_{n}\right)-q(\boldsymbol{\theta})\right| \geq \epsilon\right]: \boldsymbol{\theta} \in \Theta\right\} \rightarrow 0 . \tag{5.2.2}
\end{equation*}
$$

Bounds $b(n, \epsilon)$ for $\sup _{\boldsymbol{\theta}} P_{\boldsymbol{\theta}}\left[\left|\hat{q}_{n}-q(\boldsymbol{\theta})\right| \geq \epsilon\right]$ that yield (5.2.2) are preferable and we shall indicate some of qualitative interest when we can. But, with all the caveats of Section 5.1, (5.2.1), which is called consistency of \widehat{q}_{n} and can be thought of as 0 'th order asymptotics, remains central to all asymptotic theory. The stronger statement (5.2.2) is called uniform consistency. If Θ is replaced by a smaller set K, we talk of uniform consistency over K.

Matrix Denoising Consistency

Matrix Denoising Consistency

Canonical Matrix Denoising Model

$$
\underbrace{\widehat{\widehat{\mathbf{S}}}}_{\text {observation }}=\underbrace{\mathbf{S}}_{\text {signal }}+\underbrace{\mathrm{N}}_{\text {novse }} \in \mathbb{R}^{n \times n} ;
$$

S is low-rank and symmetric;
N satisfies $\mathbb{E N}_{i j}^{2}=\sigma^{2}$.

Matrix Denoising Consistency

$$
\begin{aligned}
& \underbrace{\widehat{\widehat{\mathbf{S}}}}_{\text {observation }}=\underbrace{\mathbf{S}}_{\text {signal }}+\underbrace{\mathrm{N}}_{\text {noise }} \in \mathbb{R}^{n \times n} ; \\
& \mathbf{S}=\mathbf{U} \Lambda \mathbf{U}^{\top} ; \\
& \mathrm{N} \text { satisfies } \mathbb{E N}_{i j}^{2}=\sigma^{2}
\end{aligned}
$$

Matrix Denoising Consistency

- $\mathbf{U} \in \mathbb{O}(n, r)$ (resp. $\widehat{\mathbf{U}}$) is matrix of leading eigenvectors of \mathbf{S} (resp. $\widehat{\mathbf{S}}$)

Matrix Denoising Consistency

- $\mathbf{U} \in \mathbb{O}(n, r)$ (resp. $\hat{\mathbf{U}}$) is matrix of leading eigenvectors of \mathbf{S} (resp. $\widehat{\mathbf{S}}$)
- Λ is a diagonal $r \times r$ matrix of singular values $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$

Matrix Denoising Consistency

- $\mathbf{U} \in \mathbb{O}(n, r)$ (resp. $\widehat{\mathbf{U}}$) is matrix of leading eigenvectors of \mathbf{S} (resp. $\widehat{\mathbf{S}}$)
- Λ is a diagonal $r \times r$ matrix of singular values $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$
- Define the signal-to-noise ratio:

$$
\mathrm{SNR}:=\frac{\lambda_{r}}{\sigma} .
$$

Matrix Denoising Consistency

$$
\begin{aligned}
\underbrace{\widehat{\mathbf{S}}}_{\text {observation }} & =\underbrace{\mathbf{S}}_{\text {signal }}+\underbrace{\mathbf{N}}_{\text {noise }} \in \mathbb{R}^{n \times n} ; \\
\mathbf{S} & =\mathbf{U} \Lambda \mathbf{U}^{\top} ; \\
\mathrm{N} & \text { satisfies } \mathbb{E N}_{i j}^{2}=\sigma^{2}
\end{aligned}
$$

- Eigenvector matrix $\widehat{\mathbf{U}}$ is highly nonlinear function of noise \mathbb{N}

Matrix Denoising Consistency

$$
\begin{aligned}
\underbrace{\widehat{\mathbf{S}}}_{\text {observation }} & =\underbrace{\mathbf{S}}_{\text {signal }}+\underbrace{\mathbf{N}}_{\text {noise }} \in \mathbb{R}^{n \times n} ; \\
\mathbf{S} & =\mathbf{U} \Lambda \mathbf{U}^{\top} ; \\
\mathrm{N} & \text { satisfies } \mathbb{E N}_{i j}^{2}=\sigma^{2}
\end{aligned}
$$

- Eigenvector matrix $\widehat{\mathbf{U}}$ is highly nonlinear function of noise N
- Davis-Kahan Theorem:

$$
\inf _{\mathcal{O}: \mathcal{O O}^{\top}=\mathbf{I}_{r}}\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \leq C \frac{\sqrt{n}}{\operatorname{SNR}}
$$

Matrix Denoising Consistency

- Eigenvector matrix $\widehat{\mathbf{U}}$ is highly nonlinear function of noise \mathbb{N}
- Davis-Kahan Theorem:

$$
\inf _{\mathcal{O}: \mathcal{O O}^{\top}=\mathbf{I}_{r}}\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \leq C \frac{\sqrt{n}}{\operatorname{SNR}}
$$

- Means that SNR $\gg \sqrt{n}$ is sufficient for consistency!

Matrix Denoising Consistency

- Eigenvector matrix $\widehat{\mathbf{U}}$ is highly nonlinear function of noise N
- Davis-Kahan Theorem:

$$
\inf _{\mathcal{O}: \mathcal{O O}^{\top}=\mathbf{I}_{r}}\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \leq C \frac{\sqrt{n}}{\operatorname{SNR}}
$$

- Means that SNR $\gg \sqrt{n}$ is sufficient for consistency!
- Can show it is also necessary under Gaussian noise.

Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form $\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \rightarrow 0$ are often too weak to to guarantee anything besides consistency.

Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form $\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \rightarrow 0$ are often too weak to to guarantee anything besides consistency.

A First Solution

Study the $\ell_{2, \infty}$ perturbation of the form:

$$
\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\|_{2, \infty}:=\max _{1 \leq i \leq n}\left\|(\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U})_{i} .\right\| \leq ? ? ?
$$

Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form $\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \rightarrow 0$ are often too weak to to guarantee anything besides consistency.

A First Solution

Study the $\ell_{2, \infty}$ perturbation of the form:

$$
\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\|_{2, \infty}:=\max _{1 \leq i \leq n}\left\|(\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U})_{i} .\right\| \leq ? ? ?
$$

- Can be used to study implicit regularization and nonconvex optimization

Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form $\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \rightarrow 0$ are often too weak to to guarantee anything besides consistency.

A First Solution

Study the $\ell_{2, \infty}$ perturbation of the form:

$$
\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\|_{2, \infty}:=\max _{1 \leq i \leq n}\left\|(\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U})_{i} .\right\| \leq ? ? ?
$$

- Can be used to study implicit regularization and nonconvex optimization
- Can be used to obtain perfect clustering in mixture models

Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form $\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\| \rightarrow 0$ are often too weak to to guarantee anything besides consistency.

A First Solution

Study the $\ell_{2, \infty}$ perturbation of the form:

$$
\|\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U}\|_{2, \infty}:=\max _{1 \leq i \leq n}\left\|(\widehat{\mathbf{U}} \mathcal{O}-\mathbf{U})_{i} .\right\| \leq ? ? ?
$$

- Can be used to study implicit regularization and nonconvex optimization
- Can be used to obtain perfect clustering in mixture models
- Often a precursor to limit theory

Incoherence Parameter

Definition

The incoherence parameter of a symmetric rank r matrix S with eigendecomposition $\mathbf{U} \Lambda \mathbf{U}^{\top}$ is defined as the smallest number μ_{0} such that

$$
\|\mathbf{U}\|_{2, \infty}=\max _{i}\left\|\mathbf{U}_{i .} .\right\| \leq \mu_{0} \sqrt{\frac{r}{n}}
$$

Incoherence Parameter

Definition

The incoherence parameter of a symmetric rank r matrix S with eigendecomposition $\mathbf{U} \Lambda \mathbf{U}^{\top}$ is defined as the smallest number μ_{0} such that

$$
\|\mathbf{U}\|_{2, \infty}=\max _{i}\left\|\mathbf{U}_{i \cdot}\right\| \leq \mu_{0} \sqrt{\frac{r}{n}}
$$

- Examples:

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \text { versus }\left(\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)
$$

Incoherence Parameter

Definition

The incoherence parameter of a symmetric rank r matrix S with eigendecomposition $\mathbf{U} \Lambda \mathbf{U}^{\top}$ is defined as the smallest number μ_{0} such that

$$
\|\mathbf{U}\|_{2, \infty}=\max _{i}\left\|\mathbf{U}_{i} .\right\| \leq \mu_{0} \sqrt{\frac{r}{n}}
$$

- Examples:

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \text { versus }\left(\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)
$$

Larger values of μ_{0} means "more spiky" \mathbf{S} !

$\ell_{2, \infty}$ Perturbation in Matrix Denoising

Theorem

Suppose that $\mathrm{SNR} \geq C \sqrt{n \log (n)}$ for some sufficiently large constant C.

$\ell_{2, \infty}$ Perturbation in Matrix Denoising

Theorem

Suppose that $\mathrm{SNR} \geq C \sqrt{n \log (n)}$ for some sufficiently large constant C. Suppose S is incoherent with incoherence parameter μ_{0}.

$\ell_{2, \infty}$ Perturbation in Matrix Denoising

Theorem

Suppose that SNR $\geq C \sqrt{n \log (n)}$ for some sufficiently large constant C. Suppose \mathbf{S} is incoherent with incoherence parameter μ_{0}. Then there exists a universal constant C^{\prime} such that with probability at least $1-O\left(n^{-20}\right)$

$$
\left\|\widehat{\mathbf{U}}-\mathbf{U} \mathcal{O}_{*}\right\|_{2, \infty} \leq C^{\prime} \frac{\mu_{0} \sqrt{r \log (n)}}{\operatorname{SNR}}
$$

$\ell_{2, \infty}$ Perturbation in Matrix Denoising

(Davis-Kahan Bound) $\quad\|\widehat{\mathbf{U}}-\mathbf{U O}\|_{F} \lesssim \frac{\sqrt{n r}}{\mathrm{SNR}}$;
$\left(\ell_{2, \infty}\right.$ Bound) $\quad \max _{i}\left\|(\widehat{\mathbf{U}}-\mathbf{U} \mathcal{O})_{i}.\right\| \lesssim \frac{\mu_{0} \sqrt{r \log (n)}}{\text { SNR }}$

$\ell_{2, \infty}$ Perturbation in Matrix Denoising

$$
\begin{aligned}
\text { (Davis-Kahan Bound) } \quad\|\widehat{\mathbf{U}}-\mathbf{U O}\|_{F} & \lesssim \frac{\sqrt{n r}}{\text { SNR }} ; \\
\left(\ell_{2, \infty} \text { Bound }\right) \quad \max _{i}\left\|(\widehat{\mathbf{U}}-\mathbf{U O})_{i} .\right\| & \lesssim \frac{\mu_{0} \sqrt{r \log (n)}}{\mathrm{SNR}}
\end{aligned}
$$

Key Takeaway

Errors are spread out amongst the rows when \mathbf{S} is not too spiky!

Beyond Perturbation Bounds

- $\ell_{2, \infty}$ bounds can reveal new information about how signal and noise interact (e.g., through incoherence μ_{0}).

Beyond Perturbation Bounds

- $\ell_{2, \infty}$ bounds can reveal new information about how signal and noise interact (e.g., through incoherence μ_{0}).
- Still not enough to develop optimal clustering error rates or to be used in inference problems.

Beyond Perturbation Bounds

- $\ell_{2, \infty}$ bounds can reveal new information about how signal and noise interact (e.g., through incoherence μ_{0}).
- Still not enough to develop optimal clustering error rates or to be used in inference problems.
- Develop asymptotic expansions that are amenable to analysis.

Beyond Perturbation Bounds

- $\ell_{2, \infty}$ bounds can reveal new information about how signal and noise interact (e.g., through incoherence μ_{0}).
- Still not enough to develop optimal clustering error rates or to be used in inference problems.
- Develop asymptotic expansions that are amenable to analysis.
- Develop distributional theory (e.g., limit theorems) that are first step to obtaining principled inference tools.

Beyond Perturbation Bounds

- $\ell_{2, \infty}$ bounds can reveal new information about how signal and noise interact (e.g., through incoherence μ_{0}).
- Still not enough to develop optimal clustering error rates or to be used in inference problems.
- Develop asymptotic expansions that are amenable to analysis.
- Develop distributional theory (e.g., limit theorems) that are first step to obtaining principled inference tools.

Asymptotic Expansion for Matrix Denoising

Theorem

Suppose that $\mathrm{SNR} \geq C \sqrt{n \log (n)}$.

Asymptotic Expansion for Matrix Denoising

Theorem

Suppose that $\mathrm{SNR} \geq C \sqrt{n \log (n)}$. Then there is an event \mathcal{E} satisfying $\mathbb{P}(\mathcal{E}) \geq 1-n^{-10}$ such that on this event,

Asymptotic Expansion for Matrix Denoising

Theorem

Suppose that $\mathrm{SNR} \geq C \sqrt{n \log (n)}$. Then there is an event \mathcal{E} satisfying $\mathbb{P}(\mathcal{E}) \geq 1-n^{-10}$ such that on this event,

$$
\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}=\underbrace{\mathrm{N} \mathbf{U} \Lambda^{-1}}_{\text {Linear in } \mathrm{N}}+\underbrace{\Gamma}_{\text {Small-Order Residual }}
$$

Asymptotic Expansion for Matrix Denoising

Theorem

Suppose that $\mathrm{SNR} \geq C \sqrt{n \log (n)}$. Then there is an event \mathcal{E} satisfying $\mathbb{P}(\mathcal{E}) \geq 1-n^{-10}$ such that on this event,

$$
\widehat{\mathbf{U} \mathcal{O}_{*}^{\top}}-\mathbf{U}=\underbrace{\mathrm{N} \mathbf{U} \Lambda^{-1}}_{\text {Linear in } \mathrm{N}}+\underbrace{\Gamma}_{\text {Small-Order Residual }}
$$

where

$$
\|\Gamma\|_{2, \infty} \lesssim \frac{\mu_{0}(r+\sqrt{r \log (n)})}{\sqrt{n} \times \operatorname{SNR}}+\frac{\mu_{0} \sqrt{r n} \log (n)}{\mathrm{SNR}^{2}}
$$

Asymptotic Expansion for Matrix Denoising

(Previous result)

$$
\max _{i}\left\|\left(\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}\right)_{i} .\right\|=\widetilde{O}\left(\frac{1}{\operatorname{SNR}}\right)
$$

(This result) $\max _{i}\left\|\left(\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}-\mathrm{N} \mathbf{U} \Lambda^{-1}\right)_{i}\right\|=\widetilde{o}\left(\frac{1}{\operatorname{SNR}}\right)$.

Asymptotic Expansion for Matrix Denoising

(Previous result)

$$
\max _{i}\left\|\left(\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}\right)_{i}\right\|=\widetilde{O}\left(\frac{1}{\operatorname{SNR}}\right)
$$

(This result) $\max _{i}\left\|\left(\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}-\mathrm{N} \mathbf{U} \Lambda^{-1}\right)_{i}.\right\|=\widetilde{o}\left(\frac{1}{\operatorname{SNR}}\right)$.

Key Takeaway

$\widehat{\mathbf{U}}$ is approximately a linear function of noise matrix N , population eigenvector matrix \mathbf{U}, and population eigenvalue matrix Λ !

Distributional Theory for Matrix Denoising

Theorem

Suppose that r is fixed, that the condition number κ of S is bounded, and that μ_{0} is bounded.

Distributional Theory for Matrix Denoising

Theorem

Suppose that r is fixed, that the condition number κ of S is bounded, and that μ_{0} is bounded. Suppose further that SNR $\gg \sqrt{n} \log (n)$.

Distributional Theory for Matrix Denoising

Theorem

Suppose that r is fixed, that the condition number κ of S is bounded, and that μ_{0} is bounded. Suppose further that SNR $\gg \sqrt{n} \log (n)$.
Then it holds that

$$
\frac{\Lambda}{\sigma}\left(\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}\right)_{i .} \rightarrow \mathcal{N}\left(0, \mathbf{I}_{r}\right)
$$

in distribution as $n \rightarrow \infty$.

Distributional Theory for Matrix Denoising

Theorem

Suppose that r is fixed, that the condition number κ of S is bounded, and that μ_{0} is bounded. Suppose further that SNR $\gg \sqrt{n} \log (n)$. Then it holds that

$$
\frac{\Lambda}{\sigma}\left(\widehat{\mathbf{U}} \mathcal{O}_{*}^{\top}-\mathbf{U}\right)_{i .} \rightarrow \mathcal{N}\left(0, \mathbf{I}_{r}\right)
$$

in distribution as $n \rightarrow \infty$.

Limiting variance of the entries of l 'th eigenvector is $\frac{\sigma^{2}}{\lambda^{2}}$!

Distributional Theory for Matrix Denoising

Empirical Vs Theoretical Distribution ($\mathrm{n}=200, \mathrm{MC}=1000$)

Outline

(1) High-Dimensional Low-Rank Matrix Models

(2) Asymptotics
(3) Statistical Inference
(4) Contributions

Statistical Inference

Inference problems of interest:

Statistical Inference

Inference problems of interest:

- Two-sample network testing

Statistical Inference

Inference problems of interest:

- Two-sample network testing

- Testing vertex memberships

Statistical Inference

Inference problems of interest:

- Two-sample network testing
- Goodness of fit testing

- Testing vertex memberships

Statistical Inference

Inference problems of interest:

- Two-sample network testing

- Testing vertex memberships

- Goodness of fit testing

- Simultaneous confidence intervals

Statistical Inference

Inference problems of interest:

- Two-sample network testing

- Testing vertex memberships

- Goodness of fit testing

- Simultaneous confidence intervals

Main Idea

Use the previous results to justify subsequent inference with eigenvectors, singular vectors, or related quantities.

A Simple Testing Problem

- Consider the null hypothesis:

$$
H_{0}: \mathbf{S}_{i}=\mathbf{S}_{j} .
$$

A Simple Testing Problem

- Consider the null hypothesis:

$$
H_{0}: \mathbf{S}_{i}=\mathbf{S}_{j} .
$$

- Since \mathbf{S} is low-rank, H_{0} holds if and only if

$$
\left\|(\mathbf{U} \Lambda)_{i .}-(\mathbf{U} \Lambda)_{j} \cdot\right\|^{2}=0 .
$$

A Simple Testing Problem

- Consider the null hypothesis:

$$
H_{0}: \mathbf{S}_{i}=\mathbf{S}_{j} .
$$

- Since \mathbf{S} is low-rank, H_{0} holds if and only if

$$
\left\|(\mathbf{U} \Lambda)_{i .}-(\mathbf{U} \Lambda)_{j} \cdot\right\|^{2}=0 .
$$

- Don't have access to \mathbf{U} and Λ !

A Simple Testing Problem

- Consider the null hypothesis:

$$
H_{0}: \mathbf{S}_{i .}=\mathbf{S}_{j}
$$

- Since S is low-rank, H_{0} holds if and only if

$$
\left\|(\mathbf{U} \Lambda)_{i .}-(\mathbf{U} \Lambda)_{j} \cdot\right\|^{2}=0 .
$$

- Don't have access to \mathbf{U} and Λ !

Test Statistic
Define

$$
T_{i j}^{2}:=\frac{1}{2 \sigma^{2}}\left\|(\widehat{\mathbf{U}} \widehat{\Lambda})_{i} .-(\widehat{\mathbf{U}} \widehat{\Lambda})_{j} \cdot\right\|^{2}
$$

(we assume that σ is known for convenience).

A Simple Testing Problem

Theorem

Suppose that r is fixed, and μ_{0}, κ are bounded. Suppose that SNR $\gg \sqrt{n} \log (n)$. Then:

A Simple Testing Problem

Theorem

Suppose that r is fixed, and μ_{0}, κ are bounded. Suppose that SNR $\gg \sqrt{n} \log (n)$. Then:

- (Consistency under the null) If \mathbf{S}_{i}. $=\mathbf{S}_{j}$., it holds that $T_{i j}^{2} \rightarrow \chi_{r}^{2}$.

A Simple Testing Problem

Theorem

Suppose that r is fixed, and μ_{0}, κ are bounded. Suppose that SNR $\gg \sqrt{n} \log (n)$. Then:

- (Consistency under the null) If $\mathbf{S}_{i}=\mathbf{S}_{j}$., it holds that $T_{i j}^{2} \rightarrow \chi_{r}^{2}$.
- (Consistency under local alternatives) If it holds that $\left\|\mathbf{S}_{i} .-\mathbf{S}_{j}.\right\| \gg \sigma$, then it holds that $\mathbb{P}\left(T_{i j}^{2}>C\right) \rightarrow 1$ for any $C>0$.

A Simple Testing Problem

Theorem

Suppose that r is fixed, and μ_{0}, κ are bounded. Suppose that SNR $\gg \sqrt{n} \log (n)$. Then:

- (Consistency under the null) If $\mathrm{S}_{i}=\mathrm{S}_{j}$., it holds that $T_{i j}^{2} \rightarrow \chi_{r}^{2}$.
- (Consistency under local alternatives) If it holds that $\left\|\mathbf{S}_{i}-\mathbf{S}_{j}.\right\| \gg \sigma$, then it holds that $\mathbb{P}\left(T_{i j}^{2}>C\right) \rightarrow 1$ for any $C>0$. If instead it holds that $\frac{1}{2 \sigma^{2}}\left\|\mathbf{S}_{i} .-\mathbf{S}_{j} .\right\|^{2} \rightarrow \mu>0$, then $T_{i j}^{2} \rightarrow \chi_{r}^{2}(\mu)$.

A Simple Testing Problem

Theorem

Suppose that r is fixed, and μ_{0}, κ are bounded. Suppose that SNR $\gg \sqrt{n} \log (n)$. Then:

- (Consistency under the null) If $\mathbf{S}_{i}=\mathbf{S}_{j}$., it holds that $T_{i j}^{2} \rightarrow \chi_{r}^{2}$.
- (Consistency under local alternatives) If it holds that $\left\|\mathbf{S}_{i} .-\mathbf{S}_{j}.\right\| \gg \sigma$, then it holds that $\mathbb{P}\left(T_{i j}^{2}>C\right) \rightarrow 1$ for any $C>0$. If instead it holds that $\frac{1}{2 \sigma^{2}}\left\|\mathbf{S}_{i} .-\mathbf{S}_{j} .\right\|^{2} \rightarrow \mu>0$, then $T_{i j}^{2} \rightarrow \chi_{r}^{2}(\mu)$.

Key Takeaway

Consistent testing is possible in high dimensions given knowledge of the underlying low-rank structure!

A Simple Testing Problem

Null Empirical Vs Theoretical Distribution ($n=200$, MC= 1000)

Outline

(1) High-Dimensional Low-Rank Matrix Models

(2) Asymptotics
(3) Statistical Inference

4 Contributions

$=$

Chapter 1: Introduction

Chapter 1: Introduction

- Develop framework for statistical inference

Chapter 1: Introduction

- Develop framework for statistical inference
- Examples with matrix denoising model

Chapter 1: Introduction

- Develop framework for statistical inference
- Examples with matrix denoising model
- A few novel results you have seen today

Chapter 2: Rectangular Signal Plus Noise Model

Chapter 2: Rectangular Signal Plus Noise Model

- Distributional theory and inference in the rectangular signal plus noise model

Chapter 2: Rectangular Signal Plus Noise Model

- Distributional theory and inference in the rectangular signal plus noise model
- Allow for heteroskedasticity and dependence in the noise

Chapter 2: Rectangular Signal Plus Noise Model

- Distributional theory and inference in the rectangular signal plus noise model
- Allow for heteroskedasticity and dependence in the noise
- Apply to high-dimensional mixture models

Chapter 2: Rectangular Signal Plus Noise Model

- Distributional theory and inference in the rectangular signal plus noise model
- Allow for heteroskedasticity and dependence in the noise
- Apply to high-dimensional mixture models
- Based on "Entrywise Estimation of Singular Vectors with Heteroskedasticity and Dependence" (Agterberg et al., 2022b)

Chapter 3: Sparse PCA

Chapter 3: Sparse PCA

- $\ell_{2, \infty}$ rates of convergence in Sparse PCA model

Chapter 3: Sparse PCA

- $\ell_{2, \infty}$ rates of convergence in Sparse PCA model
- Results reveal new phenomena with respect to sparsity and estimation

Chapter 3: Sparse PCA

- $\ell_{2, \infty}$ rates of convergence in Sparse PCA model
- Results reveal new phenomena with respect to sparsity and estimation
- Based on "Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms" (Agterberg and Sulam, 2022)

Chapter 4: Tensor Data Analysis

Chapter 4: Tensor Data Analysis

- $\ell_{2, \infty}$ rates of estimation in tensor mixed-membership blockmodel and more general tensor denoising model

Chapter 4: Tensor Data Analysis

- $\ell_{2, \infty}$ rates of estimation in tensor mixed-membership blockmodel and more general tensor denoising model
- Results reveal new phenomena for Tensor SVD that are different from Matrix SVD

Chapter 4: Tensor Data Analysis

- $\ell_{2, \infty}$ rates of estimation in tensor mixed-membership blockmodel and more general tensor denoising model
- Results reveal new phenomena for Tensor SVD that are different from Matrix SVD
- Based on "Estimating Higher-Order mixed Memberships via the $\ell_{2, \infty}$ Tensor Perturbation Bound" (Agterberg and Zhang, 2022)

Chapter 5: Two-Sample Network Testing

Chapter 5: Two-Sample Network Testing

- Provide a testing procedure for a hypothesis test for two networks and show that it is consistent under null and alternative hypotheses

Chapter 5: Two-Sample Network Testing

- Provide a testing procedure for a hypothesis test for two networks and show that it is consistent under null and alternative hypotheses
- Results based on asymptotic expansions developed in Rubin-Delanchy et al. (2020) as well as results in Agterberg et al. (2020b)

Chapter 5: Two-Sample Network Testing

- Provide a testing procedure for a hypothesis test for two networks and show that it is consistent under null and alternative hypotheses
- Results based on asymptotic expansions developed in Rubin-Delanchy et al. (2020) as well as results in Agterberg et al. (2020b)
- Based on "Nonparametric Two-Sample Hypothesis Testing for Random Graphs with Negative and Repeated Eigenvalues" (Agterberg et al., 2020a)

Chapter 6: Clustering in Multilayer Networks

Chapter 6: Clustering in Multilayer Networks

- Develop "exponential" misclustering error rates for a spectral algorithm for heterogeneous networks

Chapter 6: Clustering in Multilayer Networks

- Develop "exponential" misclustering error rates for a spectral algorithm for heterogeneous networks
- Results based on two novel asymptotic expansions, and results reveal how error rates improve with more networks

Chapter 6: Clustering in Multilayer Networks

- Develop "exponential" misclustering error rates for a spectral algorithm for heterogeneous networks
- Results based on two novel asymptotic expansions, and results reveal how error rates improve with more networks
- Based on "Joint Spectral Clustering in Multilayer Degree-Corrected Stochastic Blockmodels" (Agterberg et al., 2022a)

Future and Ongoing Work

- Multilayer networks:
- More general community models with estimation and testing guarantees with multilayer networks
- Estimation accuracy in sparse network regimes
- Network time series
- Signed multilayer networks

Future and Ongoing Work

- Multilayer networks:
- More general community models with estimation and testing guarantees with multilayer networks
- Estimation accuracy in sparse network regimes
- Network time series
- Signed multilayer networks
- Tensor data analysis:
- Statistical inference for low-rank tensors by building upon $\ell_{2, \infty}$ tensor perturbation bound (ongoing)
- Other notions of low-rank
- Robustness and sparsity

Future and Ongoing Work

- Multilayer networks:
- More general community models with estimation and testing guarantees with multilayer networks
- Estimation accuracy in sparse network regimes
- Network time series
- Signed multilayer networks
- Tensor data analysis:
- Statistical inference for low-rank tensors by building upon $\ell_{2, \infty}$ tensor perturbation bound (ongoing)
- Other notions of low-rank
- Robustness and sparsity
- Spectral methods and nonconvex algorithms:
- Entrywise guarantees for other nonconvex matrix and tensor algorithms under different noise models
- Inference with the outputs of nonconvex procedures
- Heterogeneous missingness mechanisms

Pictures

Pictures

References I

Joshua Agterberg and Jeremias Sulam. Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms. In Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, pages 6591-6629. PMLR, May 2022. ISSN: 2640-3498.

Joshua Agterberg and Anru Zhang. Estimating Higher-Order Mixed Memberships via the \$lell_\{2, linfty\}\$ Tensor Perturbation Bound, December 2022. arXiv:2212.08642 [math, stat].
Joshua Agterberg, Minh Tang, and Carey Priebe. Nonparametric Two-Sample Hypothesis Testing for Random Graphs with Negative and Repeated Eigenvalues. arXiv:2012.09828 [math, stat], December 2020a.
Joshua Agterberg, Minh Tang, and Carey E. Priebe. On Two Distinct Sources of Nonidentifiability in Latent Position Random Graph Models. arXiv:2003.14250 [math, stat], March 2020b.

References II

Joshua Agterberg, Zachary Lubberts, and Jesús Arroyo. Joint Spectral Clustering in Multilayer Degree-Corrected Stochastic Blockmodels, December 2022a. arXiv:2212.05053 [math, stat].
Joshua Agterberg, Zachary Lubberts, and Carey E. Priebe.
Entrywise Estimation of Singular Vectors of Low-Rank Matrices With Heteroskedasticity and Dependence. IEEE Transactions on Information Theory, 68(7):4618-4650, July 2022b. ISSN 1557-9654. doi: 10.1109/TIT.2022.3159085.
Patrick Rubin-Delanchy, Joshua Cape, Minh Tang, and Carey E. Priebe. A statistical interpretation of spectral embedding: the generalised random dot product graph. arXiv:1709.05506 [cs, stat], January 2020.

Thank you!

v: @JAgterberger

