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High-Dimensional Models

T; = u + og;; 1=1,...,n
~— ~—~ ~—~
observation signal
u e R? >0

g; IS mean-zero isotropic noise.

@ Easy to check:

B d
Ellz - /l||2 = 25

@ Can show there are matching lower bounds over all possible
estimators of u

Problem

With fixed o, we need to have % — 0 for consistency.
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High-Dimensional Models

ymptoti al Inference Contributior References

Martin J. Wainwright

Given these “no free lunch” guarantees, what can help us in the high-dimensional setting?
Essentially, our only hope is that the data is endowed with some form of low-dimensional
structure, one which makes it simpler than the high-dimensional view might suggest. Much
of high-dimensional statistics involves constructing models of high-dimensional phenomena
that involve some implicit form of low-dimensional structure, and then studying the statisti-
cal and computational gains afforded by exploiting this structure. In order to illustrate, let us
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Low-Dimensional Structure via Sparsity

Assume that i only has s nonzero entries, with s < d.
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Low-Dimensional Structure via Sparsity

Assume that i only has s nonzero entries, with s < d.

@ Can show there is an estimator z(sparsity)
satisfying

E[[z(Prsiy) — )12 < 28log(ed/s)
~ n

@ Similar lower bound over all s-sparse
vectors p.
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Low-Dimensional Structure via Sparsity

Assume that i only has s nonzero entries, with s < d. ]

@ Can show there is an estimator z(sparsity)
satisfying

E||zGParsity) _ )12 < 2 slog(ed/s)
~ n

@ Similar lower bound over all s-sparse
vectors p.

Key Takeaway

Imposing low-dimensional structural assumptions can maintain
consistency in high dimensions.
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High-Dimensional Matrix Models

Data doesn’t have to be Euclidean!
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Data doesn’t have to be Euclidean! ]

@ Network data @ Matrix time series
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High-Dimensional Matrix Models

Data doesn’t have to be Euclidean! ]

@ Network data @ Matrix time series

Revenuey x(®  x®  x®
Assetsy x x§ x{
Dividends per shareg xétl) Xét; XC(’:tS)

@ Brain image data @ Hypergraph data

a_ )
LA

Apple Twitter Tesla ---
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High-Dimensional Low-Rank Matrix Models

By imposing low-dimensional structural assumptions (low-
rankedess), we can maintain consistency and perform valid in-
ference in high dimensions
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Observation Signal Noise
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A Canonical Model

Observation Signal

Canonical Matrix Denoising Model

§ = +N eR¥%
~— ~— ~—
observation signal

S is low-rank and symmetric;

satisfies ENG; = 0%,
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High-Dimensional Mixture Model

Dimension 2

o
Dimension 1
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High-Dimensional Mixture Model

High-Dimensional Mixture Model

Xi:MZ(i)Jr iERd, 1<i<n;

(i) is the membership of the 7'th observation;
1y are the K different means;

EY,=0.
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High-Dimensional Mixture Model

High-Dimensional Mixture Model

Xi=p@m+Y: €RY  1<i<my
z() is the membership of the i'th observation;
ui are the K different means;
EY, =0.

Corresponding Low-Rank Matrix Model

Hz(1)

Hz(n)

Low—Rank Matrix
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Principal Component Analysis

Principal Component Analysis

Estimate leading eigenvectors of covariance:

X, = 2%y, e R?, 1<i<mn;
EY; =0; EYY; =1,
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Principal Component Analysis

Principal Component Analysis

Estimate leading eigenvectors of covariance:

X, = 2%y, e R?, 1<i<ng
EY; =0; EYY; =1,

Corresponding Low-Rank Matrix Model

~ 1<

i=1

Low—rank matrix “noise”
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Network Analysis

Observation

Signal
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Network Analysis

Observation Signal

Statistical Network Analysis

i nxn,
A= P + e {0,1}™*"

Probability Matrix
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Tensor Data Analysis
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Tensor Data Analysis
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Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular
vectors, or related quantities that contain important information.
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Ay o

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular
vectors, or related quantities that contain important information.

This dissertation:

N @ Study eigenvector/singular vector rates of
convergence via fine-grained bounds;

@ Establish asymptotic expansions and limit
theorems;
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Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular
vectors, or related quantities that contain important information.

Y This dissertation:
M @ Study eigenvector/singular vector rates of
, convergence via fine-grained bounds;
y @ Establish asymptotic expansions and limit
theorems;

o X x X @ Design principled inference procedures.
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Asymptotics

A.W. van der Vaart

Why asymptotic statistics? The use of asymptotic approximations is two-
fold. First, they enable us to find approximate tests and confidence regions.
Second, approximations can be used theoretically to study the quality
(efficiency) of statistical procedures.



Asymptotics
00@000000000000

Consistency

5.2 CONSISTENCY

5.2.1 Plug-In Estimates and MLEs in Exponential Family
Models

Suppose that we have a sample X, ... , X, from Pg where @ € © and want to esimate
a real or vector ¢(0). The least we can ask of our estimate g, (X1, ..., Xn) is that as

P,
n — 00, gn —q q(6) for all 8. That is, in accordance with (A.14.1) and (B.7.1), for all
6€6,¢>0,
Pgllgn(X1,..- 1 Xn) — q(8)] > €] - 0. (5.2.1)

where | - | denotes Euclidean distance. A stronger requirement is

Sgp {Pgl|gn{Xy,-.. s Xn) - q(6)| 2 €] : 6 €O} - 0. (522)

Bounds b(n, €) for supg Pg (|3, — ¢(6)| > e] that yield (5.2.2) are preferable and we shall
indicate some of qualitative interest when we can. But, with all the caveats of Section 5.1,
(5.2.1), which is called consistency of G, and can be thought of as 0’th order asymptotics,
remains central to all asymptotic theory. The stronger statement (5.2.2) is called uniform
consistency. If © is replaced by a smaller set K, we talk of uniform consistency over K.
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Matrix Denoising Consistency

Observation Signal

Canonical Matrix Denoising Model

S, =8 +NN eRvm
~— ~— =~
observation signal
S is low-rank and symmetric;

satisfies ENG; = 0%,
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High-Dimen: al Inference Contributi References

Matrix Denoising Consistency

S S + N eR™™
—~— ~— =~
observation signal  noise

S=UAU";
N satisfies EN?; = o2,
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Matrix Denoising Consistency

—~— ~— =~
observation signal

S=UAUT;

satisfies EN2, =

2
ij — 7 -

@ U c O(n,r) (resp. U) is matrix of leading eigenvectors of S
(resp. S)
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Matrix Denoising Consistency

S, =8+ eRrRmm
~— ~— =~
observation signal
S=UAU";
satisfies EN?, = 2.

iy

@ U c O(n,r) (resp. U) is matrix of leading eigenvectors of S

(resp. S)
@ Ais adiagonal r x r matrix of singular values
AM > > 20 >0
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Matrix Denoising Consistency

S, =8+ eRrRmm
~— ~— =~
observation signal
S=UAU";
satisfies EN?, = 2.

iy

@ U c O(n,r) (resp. U) is matrix of leading eigenvectors of S
(resp. S)

@ Ais adiagonal r x r matrix of singular values
AM > > 20 >0

@ Define the signal-to-noise ratio:

Ar
SNR : = —.
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Matrix Denoising Consistency

S =S+ er™
~— ~—~ =~
observation signal
S=UAUT;
satisfies EN?, = 2.

ij

@ Eigenvector matrix U is highly nonlinear function of noise
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@ Means that SNR > /n is sufficient for consistency!
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Matrix Denoising Consistency

S =S+ er™
~— ~—~ =~
observation signal
S=UAUT;
satisfies EN?, = 2.

ij

@ Eigenvector matrix U is highly nonlinear function of noise
@ Davis-Kahan Theorem:

. N NG
f Ul < .
ooit_, 00 -Ul=Cqg

@ Means that SNR > /n is sufficient for consistency!
@ Can show it is also necessary under Gaussian noise.
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Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form |[UO — U|| — 0 are often too weak to to
guarantee anything besides consistency.
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Matrix Denoising Consistency: Finer Grained Bounds

Results of the form |[UO — U|| — 0 are often too weak to to
guarantee anything besides consistency.

A First Solution

Study the ¢ -, perturbation of the form:

|TO - U200 := max [|(TO - 1), || <???
’ 1<i<n

7.
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Matrix Denoising Consistency: Finer Grained Bounds

Results of the form |[UO — U|| — 0 are often too weak to to
guarantee anything besides consistency.

A First Solution

Study the ¢ -, perturbation of the form:

|TO - U200 := max [|(TO - 1), || <???
’ 1<i<n e

@ Can be used to study implicit regularization and nonconvex
optimization

@ Can be used to obtain perfect clustering in mixture models

@ Often a precursor to limit theory
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Incoherence Parameter
Definition

The incoherence parameter of a symmetric rank » matrix S with
eigendecomposition UAUT is defined as the smallest number 1

such that
-
10l e =m0 < o2
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Definition

The incoherence parameter of a symmetric rank » matrix S with
eigendecomposition UAUT is defined as the smallest number 1

such that
-
0l e =m0 < oy /-

@ Examples:
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Incoherence Parameter

Definition

The incoherence parameter of a symmetric rank » matrix S with
eigendecomposition UAU T is defined as the smallest number 1

such that
-
0l e =m0 < oy /-

@ Examples:

o =
o O
o O
|
3=

versus

|=
S e

Larger values of 1o means “more spiky” S!
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!5 ~ Perturbation in Matrix Denoising

Suppose that SNR > C'/nlog(n) for some sufficiently large constant
C.
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C. Suppose S is incoherent with incoherence parameter .
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!5 ~ Perturbation in Matrix Denoising

Suppose that SNR > C'/nlog(n) for some sufficiently large constant
C. Suppose S is incoherent with incoherence parameter 1y. Then
there exists a universal constant C’' such that with probability at least
1—0(n=29)

_ /rTog ()
U - U0, | < 1 Hoy T 108
0 — U0 0 < €/ EOVTD
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!5 ~ Perturbation in Matrix Denoising

(Davis-Kahan Bound) |U-U0|p < %7
. e
(0 Bound)  ma (0 - U0), | 5 L D)
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!5 ~ Perturbation in Matrix Denoising

(Davis-Kahan Bound) ||fJ —UO|r S S—\?]:,

rlog(n)

7 Ho
(2.~ Bound) max [(U-100), | < SNR

Key Takeaway

Errors are spread out amongst the rows when S is not too spiky!
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Beyond Perturbation Bounds

@ /3 o, bounds can reveal new information about how signal and
interact (e.g., through incoherence ).
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Beyond Perturbation Bounds

@ /3 o, bounds can reveal new information about how signal and
interact (e.g., through incoherence ).

@ Still not enough to develop optimal clustering error rates or to be
used in inference problems.

@ Develop asymptotic expansions that are amenable to analysis.

@ Develop distributional theory (e.g., limit theorems) that are first
step to obtaining principled inference tools.
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Asymptotic Expansion for Matrix Denoising

Suppose that SNR > C'/nlog(n).
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P(€) > 1 —n~'° such that on this event,
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Linear in Small-Order Residual
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Asymptotic Expansion for Matrix Denoising

Suppose that SNR > C+/nlog(n). Then there is an event £ satisfying
P(€) > 1 —n~'° such that on this event,

UO] —U=NUA'+ r
Linear in Small-Order Residual

where

Il < MO(T+ TlOg(n» po/rnlog(n)
2%~ " /nx SNR SNR?
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Asymptotic Expansion for Matrix Denoising

(Previous result) max[|(DO] - U), || = 5(

. ~ (1
(This result) max (U0 —U - NUA™!)_ || = 0< - )
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Asymptotic Expansion for Matrix Denoising

. ~ ~ 1
(Previous result) max [|(UO] - U), || = O( >;

, ~ _ [ 1
(This result)  max [(UO] —U-NUATY) || = O(SNR)'

Key Takeaway

U is approximately a linear function of noise matrix N, popula-
tion eigenvector matrix U, and population eigenvalue matrix A!
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Distributional Theory for Matrix Denoising

Suppose that r is fixed, that the condition number x of S is bounded,
and that y is bounded.
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Suppose that r is fixed, that the condition number x of S is bounded,
and that p is bounded. Suppose further that SNR > \/nlog(n).
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Distributional Theory for Matrix Denoising

Suppose that r is fixed, that the condition number x of S is bounded,
and that p is bounded. Suppose further that SNR > \/nlog(n).
Then it holds that

A (ﬁoj - U) — N(0,1,)

in distribution as n — oco.
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Distributional Theory for Matrix Denoising

Suppose that r is fixed, that the condition number x of S is bounded,
and that p is bounded. Suppose further that SNR > \/nlog(n).
Then it holds that

A (ﬁoj - U) — N(0,1,)

in distribution as n — oo.

Limiting variance of the entries of I'th eigenvector is é!
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Distributional Theory for Matrix Denoising

Empirical Vs Theoretical Distribution (n=200, MC= 1000)

5-
o
Py .
S . 0
2 95% Empirical Ellipse
()
kS 95% Theoretical Ellipse
a
2-

Dimension 1



High-Dimensional Low-Rank Matrix Models Asymptotics Statistical Inference Contributions References
0000000000000 00 0000000000000 00 @0000 0000000000 o

Outline

e Statistical Inference



Statistical Inference
0®000

Statistical Inference

Inference problems of interest:



Statistical Inference
0®000

Statistical Inference

Inference problems of interest:

@ Two-sample network testing




Statistical Inference
0®000

Statistical Inference

Inference problems of interest:

@ Two-sample network testing




High-Di

< Matrix Models Asymptotics

Statistical Inference

References
[¢] lele]e} o

Statistical Inference

Inference problems of interest:

@ Two-sample network testing

Goodness of fit testing
f? ;

?
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Statistical Inference

Inference problems of interest:

@ Two-sample network testing

@ Goodness of fit testing
? '.g.:'}.-. 1

?

@ Testing vertex memberships @ Simultaneous confidence
? intervals

Main Idea

Use the previous results to justify subsequent inference with
eigenvectors, singular vectors, or related quantities.
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A Simple Testing Problem

@ Consider the null hypothesis:

HO : Si. = Sj.
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A Simple Testing Problem

@ Consider the null hypothesis:

@ Since S is low-rank, Hy holds if and only if

[(UA);. — (UA);.||2 = 0.

@ Don’t have access to U and A!

Test Statistic

Define

T2 .—

1 o~ PP
i 1= 5z 1(UA); = (UA); [P,

(we assume that o is known for convenience).
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A Simple Testing Problem

Suppose that r is fixed, and 1, x are bounded. Suppose that
SNR > +/nlog(n). Then:
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Suppose that r is fixed, and 1, x are bounded. Suppose that
SNR > +/nlog(n). Then:

@ (Consistency under the null) If S;. = S;., it holds that T, — x?.




Statistical Inference
00080

A Simple Testing Problem

Suppose that r is fixed, and 1, x are bounded. Suppose that
SNR > /nlog(n). Then:

@ (Consistency under the null) If S;. = S;., it holds that T, — x?.

@ (Consistency under local alternatives) If it holds that
[Si. — S;.|l > o, then it holds that P(T7; > C) — 1 for any C > 0.
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A Simple Testing Problem

Suppose that r is fixed, and 1, x are bounded. Suppose that
SNR > /nlog(n). Then:

@ (Consistency under the null) If S;. = S;., it holds that T, — x?.

@ (Consistency under local alternatives) If it holds that
[Si. — S;.|l > o, then it holds that P(T7; > C) — 1 for any C > 0.
If instead it holds that 515 ||S;. — S;.||> — 1 > 0, then T — x?(n).
v
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A Simple Testing Problem

Suppose that r is fixed, and 1, x are bounded. Suppose that
SNR > v/nlog(n). Then:
@ (Consistency under the null) If S;. = S;., it holds that T, — x?.
@ (Consistency under local alternatives) If it holds that
ISi. — S;.|l > o, then it holds that P(T? > C) — 1 for any C' > 0.
If instead it holds that 515 ||S;. — S;.||> — 1 > 0, then T — x?(n).
v

Key Takeaway

Consistent testing is possible in high dimensions given knowl-
edge of the underlying low-rank structure!
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Observation Signal

@ Develop framework for statistical inference
@ Examples with matrix denoising model
@ A few novel results you have seen today
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@ Distributional theory and inference in the rectangular signal plus
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Chapter 2: Rectangular Signal Plus Noise Model

Observation Signal

@ Distributional theory and inference in the rectangular signal plus
noise model

@ Allow for heteroskedasticity and dependence in the noise

@ Apply to high-dimensional mixture models

@ Based on “Entrywise Estimation of Singular Vectors with
Heteroskedasticity and Dependence” (Agterberg et al., 2022b)
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Chapter 3: Sparse PCA

"8 6 -4 -2 0 2 4 6 8 10

@ /5 o rates of convergence in Sparse PCA model

@ Results reveal new phenomena with respect to sparsity and
estimation

@ Based on “Entrywise Recovery Guarantees for Sparse PCA via
Sparsistent Algorithms” (Agterberg and Sulam, 2022)
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Chapter 4: Tensor Data Analysis
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@ /5 o rates of estimation in tensor mixed-membership blockmodel
and more general tensor denoising model

@ Results reveal new phenomena for Tensor SVD that are different
from Matrix SVD

@ Based on “Estimating Higher-Order mixed Memberships via the
{5 o Tensor Perturbation Bound” (Agterberg and Zhang, 2022)
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Chapter 5: Two-Sample Network Testing

@ Provide a testing procedure for a hypothesis test for two
networks and show that it is consistent under null and alternative
hypotheses

@ Results based on asymptotic expansions developed in
Rubin-Delanchy et al. (2020) as well as results in Agterberg et al.
(2020b)

@ Based on “Nonparametric Two-Sample Hypothesis Testing for

Random Graphs with Negative and Repeated Eigenvalues”
(Agterberg et al., 2020a)



High-Dimensional Low-Rank Matrix Models Asymptotics Statistical Inference Contributions References
000000000000000 000000000000000 00000 0000000000 o

Chapter 6: Clustering in Multilayer Networks

li
N ’ i
}:"'\!‘/,’
R

)

DA 4¢52



High-Dimensional Low-Rank Matrix Models
000000000000000

Asymptotics
000000000000000

Chapter 6: Clustering in Multilayer Networks

@ Develop “exponential” misclustering error rates for a spectral
algorithm for heterogeneous networks
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@ Develop “exponential” misclustering error rates for a spectral
algorithm for heterogeneous networks

@ Results based on two novel asymptotic expansions, and results
reveal how error rates improve with more networks
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Chapter 6: Clustering in Multilayer Networks

@ Develop “exponential” misclustering error rates for a spectral
algorithm for heterogeneous networks

@ Results based on two novel asymptotic expansions, and results
reveal how error rates improve with more networks

@ Based on “Joint Spectral Clustering in Multilayer

Degree-Corrected Stochastic Blockmodels” (Agterberg et al.,
2022a)
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Future and Ongoing Work

@ Multilayer networks:

@ More general community models with estimation and testing
guarantees with multilayer networks
e Estimation accuracy in sparse network regimes
o Network time series
o Signed multilayer networks
@ Tensor data analysis:
e Statistical inference for low-rank tensors by building upon #2 o
tensor perturbation bound (ongoing)
o Other notions of low-rank
o Robustness and sparsity
@ Spectral methods and nonconvex algorithms:
e Entrywise guarantees for other nonconvex matrix and tensor
algorithms under different noise models
e Inference with the outputs of nonconvex procedures
e Heterogeneous missingness mechanisms
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¥: @JAgterberger
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