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High-Dimensional Models

xi︸︷︷︸
observation

= µ︸︷︷︸
signal

+ σεi︸︷︷︸
noise

; i = 1, . . . , n;

µ ∈ Rd σ > 0

εi is mean-zero isotropic noise.

Easy to check:

E∥x̄− µ∥2 = σ2 d

n
.

Can show there are matching lower bounds over all possible
estimators of µ

Problem

With fixed σ, we need to have d
n → 0 for consistency.
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Low-Dimensional Structure via Sparsity

Assume that µ only has s nonzero entries, with s ≪ d.

Can show there is an estimator x̄(sparsity)

satisfying

E∥x̄(sparsity) − µ∥2 ≲ σ2 s log(ed/s)

n

Similar lower bound over all s-sparse
vectors µ.

Key Takeaway

Imposing low-dimensional structural assumptions can maintain
consistency in high dimensions.
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High-Dimensional Matrix Models

Data doesn’t have to be Euclidean!

Network data

Brain image data

Matrix time series



Apple Twitter Tesla · · ·

Revenuet X
(t)
11 X

(t)
12 X

(t)
13 · · ·

Assetst X
(t)
21 X

(t)
22 X

(t)
23 · · ·

Dividends per sharet X
(t)
31 X

(t)
32 X

(t)
33 · · ·

.

.

. · · · · · · · · ·
. . .



Hypergraph data
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High-Dimensional Low-Rank Matrix Models

Ansatz

By imposing low-dimensional structural assumptions (low-
rankedess), we can maintain consistency and perform valid in-
ference in high dimensions

≈
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A Canonical Model

︸ ︷︷ ︸
Observation

=
︸ ︷︷ ︸

Signal

+
︸ ︷︷ ︸

Noise

Canonical Matrix Denoising Model

Ŝ︸︷︷︸
observation

= S︸︷︷︸
signal

+ N︸︷︷︸
noise

∈ Rn×n;

S is low-rank and symmetric;

N satisfies EN2
ij = σ2.
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High-Dimensional Mixture Model

High-Dimensional Mixture Model

Xi = µz(i) + Y i ∈ Rd, 1 ≤ i ≤ n;

z(i) is the membership of the i’th observation;
µk are the K different means;

EY i = 0.
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High-Dimensional Mixture Model

High-Dimensional Mixture Model

Xi = µz(i) + Y i ∈ Rd, 1 ≤ i ≤ n;

z(i) is the membership of the i’th observation;
µk are the K different means;

EY i = 0.

Corresponding Low-Rank Matrix Model

X =

µz(1)

...
µz(n)


︸ ︷︷ ︸

Low−Rank Matrix

+Y
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Principal Component Analysis

Principal Component Analysis

Estimate leading eigenvectors of covariance:

Xi = Σ1/2Yi ∈ Rd, 1 ≤ i ≤ n;

EYi = 0; EYiY
⊤
i = Id
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Principal Component Analysis

Principal Component Analysis

Estimate leading eigenvectors of covariance:

Xi = Σ1/2Yi ∈ Rd, 1 ≤ i ≤ n;

EYi = 0; EYiY
⊤
i = Id

Corresponding Low-Rank Matrix Model

Σ̂ =
1

n

n∑
i=1

XiX
⊤
i = Σ0︸︷︷︸

Low−rank matrix

+ Σ̂−Σ0︸ ︷︷ ︸
“noise”
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Network Analysis

=⇒
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Network Analysis

︸ ︷︷ ︸
Observation

=
︸ ︷︷ ︸

Signal

+
︸ ︷︷ ︸

Noise

Statistical Network Analysis

A = P︸︷︷︸
Probability Matrix

+ E︸︷︷︸
Bernoulli noise

∈ {0, 1}n×n;
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Tensor Data Analysis

︸ ︷︷ ︸
Observation

=

︸ ︷︷ ︸
Signal

+

︸ ︷︷ ︸
Noise

Tensor Data Analysis

T̂︸︷︷︸
observation

= T︸︷︷︸
signal

+ Z︸︷︷︸
noise

;

T is Tucker low-rank;

EZijk = 0; EZ2
ijk ≤ σ2
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Eigenvector/Singular Vector Estimation

Fundamental Observation

In all of the previous models, it is the eigenvectors, singular
vectors, or related quantities that contain important information.

This dissertation:
Study eigenvector/singular vector rates of
convergence via fine-grained bounds;
Establish asymptotic expansions and limit
theorems;
Design principled inference procedures.
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Asymptotics
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Consistency
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Matrix Denoising Consistency

︸ ︷︷ ︸
Observation

=
︸ ︷︷ ︸

Signal

+
︸ ︷︷ ︸

Noise

Canonical Matrix Denoising Model

Ŝ︸︷︷︸
observation

= S︸︷︷︸
signal

+ N︸︷︷︸
noise

∈ Rn×n;

S is low-rank and symmetric;

N satisfies EN2
ij = σ2.
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Matrix Denoising Consistency

Ŝ︸︷︷︸
observation

= S︸︷︷︸
signal

+ N︸︷︷︸
noise

∈ Rn×n;

S = UΛU⊤;

N satisfies EN2
ij = σ2.

U ∈ O(n, r) (resp. Û) is matrix of leading eigenvectors of S
(resp. Ŝ)
Λ is a diagonal r × r matrix of singular values
λ1 ≥ λ2 ≥ · · · ≥ λr > 0

Define the signal-to-noise ratio:

SNR : =
λr

σ
.
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Matrix Denoising Consistency

Ŝ︸︷︷︸
observation

= S︸︷︷︸
signal

+ N︸︷︷︸
noise

∈ Rn×n;

S = UΛU⊤;

N satisfies EN2
ij = σ2.

Eigenvector matrix Û is highly nonlinear function of noise N

Davis-Kahan Theorem:

inf
O:OO⊤=Ir

∥ÛO −U∥ ≤ C

√
n

SNR
.

Means that SNR ≫
√
n is sufficient for consistency!

Can show it is also necessary under Gaussian noise.
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Matrix Denoising Consistency: Finer Grained Bounds

Problem

Results of the form ∥ÛO − U∥ → 0 are often too weak to to
guarantee anything besides consistency.

A First Solution

Study the ℓ2,∞ perturbation of the form:

∥ÛO −U∥2,∞ := max
1≤i≤n

∥(ÛO −U
)
i·∥ ≤???

Can be used to study implicit regularization and nonconvex
optimization
Can be used to obtain perfect clustering in mixture models
Often a precursor to limit theory
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1≤i≤n

∥(ÛO −U
)
i·∥ ≤???

Can be used to study implicit regularization and nonconvex
optimization
Can be used to obtain perfect clustering in mixture models
Often a precursor to limit theory
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Incoherence Parameter

Definition
The incoherence parameter of a symmetric rank r matrix S with
eigendecomposition UΛU⊤ is defined as the smallest number µ0

such that

∥U∥2,∞ = max
i

∥Ui·∥ ≤ µ0

√
r

n
.

Examples: 
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 versus


1
n · · · 1

n
...

. . .
...

1
n · · · 1

n



Larger values of µ0 means “more spiky” S!
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ℓ2,∞ Perturbation in Matrix Denoising

Theorem

Suppose that SNR ≥ C
√
n log(n) for some sufficiently large constant

C.

Suppose S is incoherent with incoherence parameter µ0. Then
there exists a universal constant C ′ such that with probability at least
1−O(n−20)

∥Û−UO∗∥2,∞ ≤ C ′µ0

√
r log(n)

SNR
.
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ℓ2,∞ Perturbation in Matrix Denoising

(Davis-Kahan Bound) ∥Û−UO∥F ≲

√
nr

SNR
;

(ℓ2,∞ Bound) max
i

∥
(
Û−UO

)
i·∥ ≲

µ0

√
r log(n)

SNR

Key Takeaway

Errors are spread out amongst the rows when S is not too spiky!
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Û−UO

)
i·∥ ≲

µ0

√
r log(n)

SNR

Key Takeaway

Errors are spread out amongst the rows when S is not too spiky!



30/52

High-Dimensional Low-Rank Matrix Models Asymptotics Statistical Inference Contributions References

Beyond Perturbation Bounds

ℓ2,∞ bounds can reveal new information about how signal and
noise interact (e.g., through incoherence µ0).

Still not enough to develop optimal clustering error rates or to be
used in inference problems.
Develop asymptotic expansions that are amenable to analysis.
Develop distributional theory (e.g., limit theorems) that are first
step to obtaining principled inference tools.
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Asymptotic Expansion for Matrix Denoising

Theorem

Suppose that SNR ≥ C
√
n log(n).

Then there is an event E satisfying
P
(
E
)
≥ 1− n−10 such that on this event,

ÛO⊤
∗ −U = NUΛ−1︸ ︷︷ ︸

Linear in N

+ Γ︸︷︷︸
Small-Order Residual

where

∥Γ∥2,∞ ≲
µ0

(
r +

√
r log(n)

)
√
n× SNR

+
µ0

√
rn log(n)

SNR2
.
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Asymptotic Expansion for Matrix Denoising

(Previous result) max
i

∥
(
ÛO⊤

∗ −U
)
i·∥ = Õ

(
1

SNR

)
;

(This result) max
i

∥
(
ÛO⊤

∗ −U−NUΛ−1
)
i·∥ = õ

(
1

SNR

)
.

Key Takeaway

Û is approximately a linear function of noise matrix N, popula-
tion eigenvector matrix U, and population eigenvalue matrix Λ!
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Distributional Theory for Matrix Denoising

Theorem

Suppose that r is fixed, that the condition number κ of S is bounded,
and that µ0 is bounded.

Suppose further that SNR ≫
√
n log(n).

Then it holds that

Λ

σ

(
ÛO⊤

∗ −U

)
i·
→ N (0, Ir)

in distribution as n → ∞.

Limiting variance of the entries of l’th eigenvector is σ2

λl
2 !
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Distributional Theory for Matrix Denoising
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Outline

1 High-Dimensional Low-Rank Matrix Models

2 Asymptotics

3 Statistical Inference

4 Contributions
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Statistical Inference

Inference problems of interest:

Two-sample network testing

?
=

Testing vertex memberships

21

34

?
=

Goodness of fit testing

?
=

Simultaneous confidence
intervals

Main Idea

Use the previous results to justify subsequent inference with
eigenvectors, singular vectors, or related quantities.
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A Simple Testing Problem

Consider the null hypothesis:

H0 : Si· = Sj·

Since S is low-rank, H0 holds if and only if

∥(UΛ)i· − (UΛ)j·∥2 = 0.

Don’t have access to U and Λ!

Test Statistic

Define

T 2
ij :=

1

2σ2
∥(ÛΛ̂)i· − (ÛΛ̂)j·∥2,

(we assume that σ is known for convenience).
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A Simple Testing Problem

Theorem

Suppose that r is fixed, and µ0, κ are bounded. Suppose that
SNR ≫

√
n log(n). Then:

(Consistency under the null) If Si· = Sj·, it holds that T 2
ij → χ2

r.
(Consistency under local alternatives) If it holds that
∥Si· − Sj·∥ ≫ σ, then it holds that P(T 2

ij > C) → 1 for any C > 0.
If instead it holds that 1

2σ2 ∥Si· − Sj·∥2 → µ > 0, then T 2
ij → χ2

r(µ).

Key Takeaway

Consistent testing is possible in high dimensions given knowl-
edge of the underlying low-rank structure!
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Chapter 1: Introduction

︸ ︷︷ ︸
Observation

=
︸ ︷︷ ︸

Signal

+
︸ ︷︷ ︸

Noise

Develop framework for statistical inference
Examples with matrix denoising model
A few novel results you have seen today
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Chapter 2: Rectangular Signal Plus Noise Model

︸ ︷︷ ︸
Observation

=
︸ ︷︷ ︸

Signal

+
︸ ︷︷ ︸

Noise

Distributional theory and inference in the rectangular signal plus
noise model
Allow for heteroskedasticity and dependence in the noise
Apply to high-dimensional mixture models
Based on “Entrywise Estimation of Singular Vectors with
Heteroskedasticity and Dependence” (Agterberg et al., 2022b)
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Chapter 3: Sparse PCA

ℓ2,∞ rates of convergence in Sparse PCA model
Results reveal new phenomena with respect to sparsity and
estimation
Based on “Entrywise Recovery Guarantees for Sparse PCA via
Sparsistent Algorithms” (Agterberg and Sulam, 2022)
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Chapter 5: Two-Sample Network Testing

?
=

Provide a testing procedure for a hypothesis test for two
networks and show that it is consistent under null and alternative
hypotheses
Results based on asymptotic expansions developed in
Rubin-Delanchy et al. (2020) as well as results in Agterberg et al.
(2020b)
Based on “Nonparametric Two-Sample Hypothesis Testing for
Random Graphs with Negative and Repeated Eigenvalues”
(Agterberg et al., 2020a)
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Chapter 6: Clustering in Multilayer Networks

Develop “exponential” misclustering error rates for a spectral
algorithm for heterogeneous networks
Results based on two novel asymptotic expansions, and results
reveal how error rates improve with more networks
Based on “Joint Spectral Clustering in Multilayer
Degree-Corrected Stochastic Blockmodels” (Agterberg et al.,
2022a)
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Future and Ongoing Work

Multilayer networks:
More general community models with estimation and testing
guarantees with multilayer networks
Estimation accuracy in sparse network regimes
Network time series
Signed multilayer networks

Tensor data analysis:
Statistical inference for low-rank tensors by building upon ℓ2,∞
tensor perturbation bound (ongoing)
Other notions of low-rank
Robustness and sparsity

Spectral methods and nonconvex algorithms:
Entrywise guarantees for other nonconvex matrix and tensor
algorithms under different noise models
Inference with the outputs of nonconvex procedures
Heterogeneous missingness mechanisms
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Thank you!

7: @JAgterberger
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