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The goal of this paper is to detect change points in a sequence of dynamic networks. Specifically, given a
sequence of adjacency matrices {A(t)}Tt=1 ⊂ {0, 1}n×n which come from distributions {Lt}Tt=1, where for all
t = 1, . . . , T, Lt−1 6= Lt if and only if t ∈ {η1, . . . , ηK}, for the sequence of change points {ηk}Kk=1 ⊂ {2, . . . , T}
with 1 = η0 < η1 < · · · < ηK ≤ T < ηK+1 = T + 1, the authors want to estimate the {ηk}Kk=1 accurately.

The authors consider time-varying RDPGs according to the following model:

Model 1. {A(t)}Tt=1 ⊂ {0, 1}n×n are a sequence of adjacency matrices of RDPGs satisfying the following:

1. For all t,

P{A(t)|X(t)} =
∏

1≤i<j≤n

(Xi(t)
>Xj(t))

Aij(t)(1−Xi(t)
>Xj(t))

1−Aij(t),

where X(t) = (X1(t), . . . , Xn(t))> ∈ Rn×d satisfies the following:

There exists a sequence 1 = η0 < η1 < · · · < ηk ≤ T, ηK+1 = T+1 of change points. For k ∈ {0, . . . ,K},

Xi(ηk) ∈ Rd ind∼ Fηk , i = 1, . . . , n,

and for t ∈ {ηk + 1, . . . , ηk+1 − 1},

Xi(t)

{
= Xi(t− 1) with probability ρ
ind∼ Fηk with probability 1− ρ

,

for inner product distributions Ft. For all t, Pt := X(t)X(t)>.

2. The minimal spacing between two consecutive change points satisfies

min
k=1,...,K+1

{ηk − ηk−1} = ∆ > 0

3. For each k ∈ {0, . . . ,K} and for any X,Y
i.i.d.∼ Fηk , denote

Gηk(z) = P
{
X>Y ≤ z

}
, z ∈ [0, 1].

The magnitudes of the changes in the data generating distribution are such that

min
k=1,...,K

sup
z∈[0,1]

|Gηk(z)−Gηk−1
(z)| = min

k=1,...,K+1
κk = κ > 0.
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4. For every k ∈ {0, . . . ,K} and i ∈ {1, . . . , n},

E
{
Xi(ηk)Xi(ηk)>

}
= Σk ∈ Rd×d,

where Σk has eigenvalues µk1 ≥ · · · ≥ µkd > 0, with {µk` : k = 0, . . . ,K, ` = 1, . . . , d} all being universal
constants.

So

1. the latent positions at a change point are obtained via random draw from Fηk . Between change
points, the latent positions either stay the same, or are a new draw from Fηk . At change points, this
distribution Fηk may also change.

2. We can’t have multiple change points on top of each other, and the minimum distance between change
points is ∆ > 0.

3. The changes between Fηk−1
and Fηk are sufficiently large in the sense that the distributions Gηk of

the inner product arising from two i.i.d. draws of a given Fηk , always differ in Kolmogorov-Smirnov
distance by at least κ.

4. The covariance matrices for all Fηk are positive definite.

5. As time passes, the correlation between latent positions is exponentially decaying, and if a change
point has occurred between the two time points, they are independent.

The main test statistic employed is the CUSUM statistic, which takes X̂(t) = UA(t)ΛA(t)1/2, and forms

Ŷ ti,n/2+i := X̂i(t)
>X̂n/2+i(t),

where X̂i(t)
> is the ith row of X̂(t), for all i = 1, . . . , n/2 (assume n is even). Then for (s, t, e), 0 ≤ s < t <

e ≤ T, z ∈ R, the CUSUM statistic is
Dt
s,e = sup

z∈[0,1]
|Dt

s,e(z)|,

where for αs,e(t) = [(e− t)/(t− s)]1/2, Dt
s,e(z) is defined as

Dt
s,e(z) =

√
2

n(e− s)

∣∣∣∣∣∣αs,e(t)
t∑

k=s+1

n/2∑
i=1

χ≤z(Ŷ
k
i,n/2+i)− αs,e(t)

−1
e∑

k=t+1

n/2∑
i=1

χ≤z(Ŷ
k
i,n/2+i)

∣∣∣∣∣∣ .
In essence, the first sum in Dt

s,e(z) approximates Gt(z), while the second sum approximates Gt+1(z), and
Dt
s,e estimates the KS distance between these. So long as there are no change points between s and t, as s

decreases, the first estimate should improve. Similarly, so long as there are no change points between t+ 1
and e, the second estimate should improve. This explains assumptions 2 and 3 in the model: We need the
gap between change points to be large enough that we can get a decent estimate of the KS distance between
Gt and Gt+1, which requires a number of steps before and after t without a change point; and we need the
true KS distance at change points to be large enough that we can detect true changes even with our noisy
estimate of this distance.

Algorithm 2 chops the full time sequence 1, . . . , T into subintervals (αm, βm), identifies the most likely
change points in each subinterval such that Dt

αm,βm
exceeds some threshold τ , chooses the most likely change

point bm∗ among these, and adds it to the set of estimated change points. It then repeats the procedure on
the two smaller time sequences 1, . . . , bm∗ , and bm∗ + 1, . . . , T , and continues until all smaller time sequences
are either too short or do not have any value of Dt

sm,em which exceeds the threshold, where sm and em are
endpoints chosen by intersecting the intervals (αm, βm) with the new time sequence (s, e).
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Theory

The first few lemmas show that when G 6= G̃, F 6= F̃ , which should be clear since the distributions G
are obtained from the distributions F by taking the inner product of two independent draws from F . When
G and G̃ differ enough in KS distance, this further implies that the distributions of A ∼ RDPG(F, n) and
Ã ∼ RDPG(F̃ , n) are different. This makes sense, since the distributions of X>i Xj and X̃>i X̃j should be

fairly different at this point, and these are the means of Aij and Ãij , respectively. Finally, this is equivalent

to the first n − 1 moments of F and F̃ not being identical, which can be shown by writing the probability
mass function for A|X in terms of these moments of X.

The next assumption essentially says that κ
√

∆ grows sufficiently quickly as T → ∞. Recall that κ
tells us about the minimum KS distance between distributions before and after a change point, and ∆ gives
the minimum number of time steps between change points, so we should expect that increasing these will
improve the level of signal. Also, the assumption makes clear that ρ < 1 is important for the method to
proceed, since they require more than one sample from Fηk , and these only appear between change points
when ρ < 1.

Under this assumption, the authors prove the following Theorem:

Theorem 1. Suppose d in Algorithm 2 is the true dimension, and τ ∈ [c1, c2], a certain interval depending
on κ,∆, n, ρ, T, and d. Then if the subintervals in Algorithm 2 satisfy

max
m=1,...,M

|αm − βm| ≤ C∆,

the estimated change points {η̂k}K̂k=1 satisfy

P
{
K̂ = K, |η̂k − ηk| ≤ C

T log(n)

κ2kn(1− ρ)
∀k
}
≥ 1− δ(n, T ),

where δ is decaying at least polynomially quickly in n and T .

They also discuss some possible extensions and run several simulations, the latter of which reveal that in
the presence of correlation of the graphs at the time steps between change points, their approach improves
on existing methods.
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