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1 Notation

I will not bold anything, but I will use a bit different notation to Fan et al. (2019b) to keep things consistent
with our previous discussion. In other words, P is the probability matrix, P = UDU> and A = ÛD̂Û> +
Û⊥D̂⊥Û

>
⊥ , where Û is the matrix of top d eigenvectors. Note that Fan et al. (2019b) uses H and W as the

mean matrix and noise matrices respectively and use U and Û for the eigenvectors. Also note that I will use
B as the SBM connectivity matrix as is typically used; they use P for the same purpose, so hopefully there
is no confusion.

They assume that they have K communities; I will also refer to the number of communities as K, but they
assume throughout that P is rank K; that is d = K. I will make clear where something that is written as
K is really only referring to the dimension of U (= d) or the number of communities (= K), as they are
similar, but different things. Also, Carey likes to study d < K, and though the results of Fan et al. (2019b)
hold for d = K, the results in Fan et al. (2019a) hold for a generic sequence of matrices.

Finally, I will use θ instead of the ρn I’ve used previously; this is because Fan et al. (2019b) consider the
DCMMSBM in which the parameter θ or Θ corresponds to either a sparsity or degree-correction matrix
respectively.

2 Notes on Fan et al. (2019b)

This paper is the only paper (that I know of) to study the test

H0 : πi = πj

HA : πi 6= πj

under the degree corrected mixed membership model (DCMMSBM), where πi and πj are the membership
vectors of vertex i and j respectively. They assume that either P = θΠBΠ> where Π is the n ×K matrix
whose rows sum to one or P = ΘΠBΠ>Θ, where Π is as above and Θ is a diagonal matrix of degree correction
parameters. Again they assume B is full rank and that P has distinct eigenvalues (though I believe this can
be relaxed following Cape et al. (2019b), but it might come at a high cost).

Their asymptotic results are motivated in part by those in Fan et al. (2019a) which considers asymptotics
for bilinear forms and empirical eigenvalues. Note that the results in Fan et al. (2019a) should match those
in Tang (2018) and Cape et al. (2019a) for eigenvalues and eigenvectors respectively (more on that in a bit).
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Also note that if you don’t believe that the rows of Û or X̂ are dependent in the limit, then this should
convince you (as they explicitly use the limiting covariance).

Recall from last week that the rows of Û look a lot like the rows of U and that the rows of U reveal the
communities in the mixed-membership setting. The main idea in Fan et al. (2019b) is that the matrix Û can
be approximately viewed as a “data matrix;” that is, each row of Û looks like a d-dimensional observation.
As such, one can consider a Hotelling two-sample test for two different observations (e.g. testing equality of
the mean of two normals). From Fan et al. (2019a) (and also Cape et al. (2019a)), we know that the rows of
Û are approximately Gaussian about the rows of U (up to orthogonal transformation). Therefore, under an
appropriate asymptotic regime, one should be able to show that a Hotelling test statistic is asymptotically
χ2 under the null and noncentral χ2 under the alternative.

Their test statistic is then of the form

TMM := (Ûi − Ûj)
>(Σ̂

(1)
ij )−1(Ûi − Ûj),

in the mixed-membership setting and

TDC := (Yi − Yj)>(Σ̂
(2)
ij )−1(Yi − Yj)

where Yi is Ûi divided by its first component. The reason for the division here is because under the degree-
corrected model, the ratios of the eigenvectors reveal their memberships. The Hotelling test statistic requires
a covariance above; a quick examination and notation-match shows that they are using the covariance of the
leading term in the CLT (EUD−1). As I’ve said time and time again, this is the dominant term that comes
up in all the limiting results; e.g. Cape et al. (2019a,b); Rubin-Delanchy et al. (2020); Athreya et al. (2016);
Tang and Priebe (2018); Tang et al. (2017a). Note that when considering the scaled eigenvectors, the term is
instead EU |D|−1/2, but it is in the same spirit. Since they are considering the eigenvectors Ûi and Ûj , they
consider the covariance matrix cov((ei − ej)>EUD−1). They later show that if you have a decent enough
estimator for this covariance, you can get the same results.

2.1 Discussion of their conditions

Their notation and conditions are a bit nonstandard in the literature, but they also are the only group (besides
us maybe) to be consistently pushing out asymptotic normality results for spiked eigenvectors/values.

2.1.1 Condition 1

Their first condition is that P has distinct eigenvalues and that αn →∞ where α2
n := maxi

∑n
j=1 Var(Eij).

Note that Var(Eij) = E(E2
ij) = Pij(1 − Pij). If you go to L. Lu and X. Peng (2013) (which shows that

‖E‖ ≤ O(
√

∆)) and read the proof carefully, you realize their actually bound this by maxi

∑
j Pij =: ∆. In

other words, the term α2
n, while a bit unconventional in the graph literature does have a natural place in

the analysis, and the max expected degree typically replaces it. The inclusion of αn as opposed to ∆ seems
to me to really be stemming from the careful analysis they do that requires a finer handling of terms than
one might normally need.

2.1.2 Condition 2

Their next condition is λK(Π>Π) ≥ c0n, λK(B) ≥ c0, and θ ≥ n−c1 . The first condition λK(Π>Π) is saying
that the memberships are approximately equal – there is no huge volume of vertices all in one community
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or others. Recall the bounds in Mao et al. (2019) had a precise dependence on this term in the denominator
of their result and only required that it be larger than θ−1; again, I attribute this to the precise asymptotic
regime they are studying.

Their assumption λK(B) ≥ c0 is mostly nonrestrictive if B is full-rank; because they are considering a
sequence of matrices P = P (n), they need to assume that the eigenvalues of B do not degenerate as n→∞.

Finally, their assumption θ ≥ n−c1 for some 0 < c1 < 1 is somewhat restrictive compared to other results.
Thinking of θ as a sparsity parameter, one might typicaly assume that θ ≥ ω(log(n)/n) or even θ ≥
ω(log4(n)/n) which is not satisfied if θ is of order n−c1 . The only other time I have seen a sparsity parameter
required to have this order is in Tang et al. (2017b) which requires ω(

√
n). As far as I can tell, the reason for

θ having this order is that the sparsity ends up affecting the scaling and the variance in the asymptotic results
(see Cape et al. (2019a); on the order of n

√
θ), and hence for this setting the log(n)/n information-theoretical

threshold might be too sparse.

2.1.3 Condition 3

Their condition 3 is a bit weird, but just seems to be mostly technical. Checking that the eigenvalues of

n2θΣ
(1)
ij are bounded away from 0 and ∞ is I guess just something you have to do.

Quick remark– from Cape et al. (2019a), we know that the scaling for the eigenvectors to get asymptotic
normality is n

√
θ, so their scaling of n2θ makes sense as it is the scaling needed since they have a quadratic

form of their eigenvectors.

2.2 Their Results

Their results are quite nice without going too deep into the math.

Theorem 1 (Theorems 1 and 2 of Fan et al. (2019b)). Under the null πi = πj and the eigenvalues of

n2θΣ
(1)
ij are bounded away from 0 and infinity, then TMM → χ2

K ; a χ2 distribution with K degrees of

freedom assuming knowledge of the true Σ
(1)
ij .

If instead
√
nθ||πi − πj || → ∞ then for any large C > 0, we have P (TMM > C) → 1 as n → ∞.

Moreover, if the eigenvalues of n2θΣ
(1)
ij are bounded away from 0 and infinity, ‖πi − πj‖ ∼ (nθ)−1/2 and

(Ui − Uj)
>(Σ

(1)
ij )−1(Ui − Uj) → µ where µ is some constant, then Tmm → χ2

K(µ), a noncentral χ2 with
noncentrality parameter µ.

Finally, if K̂ and Σ̂ are estimators of K and Σ
(1)
ij satisfying P(K̂ = K) = 1−o(1) and n2θ‖Σ̂−Σ

(1)
ij ‖ = oP(1),

then the asymptotic results still hold.

The beauty of the result is that using the test statistic applied to the eigenvectors gets exactly the same
asymptotic results as if one were performing a two sample test of equality of means for two multivariate
normal distributions!

Theorem 2 (Theorems 3 and 4 of Fan et al. (2019b)). Under the null πi = πj and the eigenvalues of

n2θΣ
(1)
ij are bounded away from 0 and infinity, then TDC → χ2

K−1; a χ2 distribution with K degrees of

freedom assuming knowledge of the true Σ
(2)
ij .
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If instead λ2(πiπ
>
i + πjπ

>
j )� (nθ2min)−1 then for any large C > 0, we have P (TDC > C)→ 1 as n→∞.

Finally, if K̂ and Σ̂ are estimators of K and Σ
(2)
ij satisfying P(K̂ = K) = 1−o(1) and n2θ‖Σ̂−Σ

(1)
ij ‖ = oP(1),

then the asymptotic results still hold.

The conditions for the previous theorem are mostly similar to that of the MMSBM, though Condition 5 is
a bit stringent. They require that B is positive definite and irreducible with maxk Bkk = 1. I do not think
this is required, but rather is needed for their analysis, though I didn’t dig deep enough to figure out where
they used it.

Finally, a remark on the estimators for Σ
(1)
ij and Σ

(2)
ij : they note from Fan et al. (2019a) (and also Tang

(2018)) that the eigenvalues are biased estimators of the true eigenvalues. Since Σ
(1)
ij = cov((ei−ej)>EUD−1)

depends on the eigenvalues, they include an explicit debiasing procedure using the limiting eigenvalue result
which results in an estimator that is oP((n2θ)−1).

3 Discussion Points

• Their result depends on the limiting eigenvector forms in Fan et al. (2019a) in which the eigenvalues are
determined as the solution to a fixed-point equation. However, Tang (2018) has an explicit calculation
for these eigenvalues (and a joint distribution) that depends on a number of things – but one can write
it down without solving a fixed-point equation. Could one use this in practice?

• What would the one-sample version of the test be?
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