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1 Setting

Random matrix theory is quite broad. We will mostly ignore measurability issues, and instead focus on
very nice results in RMT with connections to high dimensional data analysis.

In general, “high-dimensional data analysis” refers to data analysis in high-dimensionality regimes, i.e.
when you have (possibly more) features than observations. Classical asymptotic statistical theory involves
fixing the dimension p of the data and sending the number of observations n to infinity. However, the
primary reason we study asymptotics in the classical setting is that we typically would observe large
n, small p, so that the asymptotics would essentially “kick in.” However, in the current world of data
science, we may not have an extremely large n and small p, meaning that asymptotics hasn’t yet kicked
in. So how do we understand this?

Well, instead of sending n→∞, we instead send both n and p to infinity, and assume something about
the ratio p/n. For example, we may still assume that p/n→ 0, but p is allowed to grow with n. However,
in typical high-dimensional data analysis problems, p = O(n), so that p/n stays bounded as n→∞.

To be specific, we will assume that we either observe vectors X1, ..., Xn ∈ Rp with p/n → c < ∞, or
random matrices W1, ...,Wn ∈ Rn×n with the entries Wij iid F , where the matrices are symmetric. A
basic starting point are the spectral properties of theses matrices; in particular, we will be focusing on
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the study of the eigenvalues. Since all of our matrices are symmetric, we know that all their eigenvalues
are real, but what can we say more quantitatively about that?

For example, we may interested in the following:

• If we order the eigenvalues of Wi and EWi = 0 for all i, is there an appropiate normalization such
that the empirical cdf of the eigenvalues of Wi converges to a fixed distribution as n→∞?

• If p/n→ c <∞, what does the empirical distribution of the eigenvalues of the empirical covariance
matrix look like (again after suitable normalization)?

• What about the top eigenvalues of theses matrices?

We will see that the first two questions are related to the Marcenko-Pastur Law and the Wigner Semicir-
icle Law, and the last question has to do with the Tracy-Widom Distribution. I will likely only be able
to prove the first two results, but be advised that there are lots more results in random matrix theory
that are distinct from the above results, such as concentration inequalities for matrices (Lu and Peng,
2012; Rudelson and Vershynin, 2010), limiting laws for the top eigenvalue (Karoui, 2007; Erdos et al.,
2013; Wang, 2012; Knowles and Yin, 2017), properties of kernel random matrices (Karoui, 2010), and
many others. In particular, the upcoming seminar relates to the BBP phase transition, as described in
Baik et al. (2005) and further examined in Knowles and Yin (2017). Note that all of these results have
to do with eigenvalues as opposed to eigenvector– there are a wide variety of results on eigenvectors as
well.

2 Stieljes Transforms and Properties

There are two common ways to prove distributional results for eigenvalues. The first combinatorial
bounds for moments and traces of the matrix in question, I call this “moment bashing.” See Anderson
et al. (2010) for some of these arguments. I will not be using this method for proofs, as they typically do
not have any fundamentally new ideas contained within them outside of combinatorial bounds. Instead,
I will be using what is referred to as the “Stieljes Transform method.”

2.1 Properties and Definitions

First, we need a definition.

Definition 1 (Stieljes Transform). Let ρ be a measure, and let C+ := {z ∈ C : Im(Z) > 0}. Define
F := {f : C+ → C}, and M := {Measures on R}. The Stieljes transform sρ(·) :M→ F is defined as

sρ(z) =

∫
R

(x− z)−1dρ(x),

for z ∈ C+ where it is defined.

We first explore some properties of sρ. For now, we will assume ρ is a probability measure.

Proposition 1 (Silverstein (2009)). For a probability measure ρ the function sρ satisfies the following:

1. sρ is an analytic funciton on C+.

2. Im(sρ) > 0.

3. |sρ(z)| ≤ 1
Im(z) .

4. For continuity points of the CDF Fρ of ρ,

ρ([a, b]) =
1

π
lim
η→0+

∫ b

a

Im(sρ(ξ + iη))dξ.
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Proof. Proof of 1: Immediate, since it is an integral over R and there are no singularities.

Proof of 2: Let z be such that Im(z) > 0. Then for all x ∈ R, Im( 1
x−z ) = Im( x+z

|x−z| = Im(z/|x− z|) > 0

by assumption. Then since the integrand satisfies Im((x− z)−1) > 0 a.e. ρ, the result is proven.

Proof of 3: Fix z ∈ C+. Let ρ be the probability measure with mass at x = Re(z). Then sρ(z) = 1
Imz .

The result follows by considering any other measure and noting that the absolute value of the integrand
is maximized at x = Re(z) (since it is the orthogonal projection of z to the real line, so that the
denominator is minimized).

Proof of 4: Note that

1

π
lim
η→0+

∫ b

a

Im

(∫
R

1

x− ξ − iη
dρ(x)

)
dξ =

1

π
lim
η→0+

∫ b

a

∫
R
Im

(
1

x− ξ − iη

)
dρ(x)dξ

=
1

π
lim
η→0+

∫ b

a

∫
R

η

(x− ξ)2 + η2
dρ(x)dξ

=
1

π
lim
η→0+

∫
R

∫ b

a

η

(x− ξ)2 + η2
dξdρ(x)

=
1

π
lim
η→0+

∫
R

[
arctan

(
b− x
η

)
− arctan

(
a− x
η

)]
dρ(x)

=

∫
R
I[a,b]dρ(x)

= ρ([a, b]).

Remark 1. Part 4 above can also be proven neatly, following Anderson et al. (2010). Assume X is
distributed according µ, and define the random variable Cη independent of X, by a Cauchy distribution
with parameter η, i.e. the density of Cη is given by

η

π(x2 + η2)
.

Then the convergence in 4 above is the rewriting of the convergence in distribution of X + Cη to X as
η → 0.

Corollary 1. If P and Q are probability measures, sP = sQ if and only if P = Q.

Proof. The fact follows by considering continuity points of the CDF and noting the inversion formula
(point 4 above).

We also have the following useful property for weak convergence.

Proposition 2 (Silverstein (2009)). Let S ⊂ C+ be a countable subset with a limit point in C+. Then a
sequence of probability measures ρn converges vaguely to a probabilitiy measure ρ if and only if sρn(z)→
sρ(z) for all z ∈ S.

Proof. Suppose ρn → ρ. Then by the Portmanteau Lemma, Eρnf(X) → Eρf(X) for all continuous
bounded functions f . In particular, for all z ∈ S, the function f(x) = (x− z)−1 is a continuous bounded
function (consider its real and imaginary parts separately). This shows that sρn(z)→ sρ(z) for all z ∈ S.

Suppose sρn(z)→ sρ(z) for all z ∈ S. Then from complex analysis, since S is countable and has a limit
point, sρn is completley determined by the values it takes on S. The result follows by considering all
continuity points of the corresponding CDFs and the inversion formula.

If one wants to prove results about empirical distributions, one can use Proposition 2 with ρn as the
empirical measures and ρ as a limiting measure, and “reduce” the problem to only worrying about sρn .
Before we consider random matrices, we need to make sure that we have a probability measure.
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Example 1 (Geronimo and Hill (2003)). Let Pn := δn, the dirac measure at n. Then sPn
= (n− z)−1

for all n and z, so that lim sPn
(z) ≡ 0, which is not a Stieljes transform of any probability measure P .

Much like in the general case concerning weak convergence of probability measures, we need to find
a condition where we can ensure convergence of Pn → P in distribution (where mass does not “es-
cape to infinity”). Actually, the very readable Geronimo and Hill (2003) gives the condition that
limy→∞ iySρ(iy) = −1 as necessary and sufficient. One can easily check that this is satisfied for probabil-
ity measures, so if the limiting measure/Stieljes transform is known, then the problem is much simpler.
Clearly, the previous example doesn’t satisfy this.

2.2 Connections to Random Matrices

Suppose we have a Hermitian p× p matrix A generated by some fixed distribution on Rp with n obser-
vations, where p � n, but p/n → c ∈ (0, 1). We let F̂n(A) denote the empirical distribution function of
the eigenvalues λ1(A) ≤ λ2(A) ≤ ... ≤ λp(A) of A (which are all real). In other words,

F̂n(A)(x) :=
1

p

p∑
i=1

I{λi(A) ≤ x},

which counts the number of eigenvalues less than or equal to x. This is a well-defined measure. Further-
more,

sF̂n
(z) =

∫
R

1

x− z
dF̂n(x)

=
1

p

p∑
i=1

1

λi(A)− z

=
1

p
Tr(A− zI)−1

since the eigenvalues of (A− zI)−1 are given by the values in the summand. Hence, by Proposition 2, it
suffices to show that if An are a sequence of n×n random matrices that 1

pTr(A− zI)−1 → sρ(z) almost
surely to show convergence of the distribution of the eigenvalues.

3 Marcenko-Pastur Law

3.1 Low dimensions quickly

Suppose {Xi}ni=1 are a sequence of mean-zero random variables taking values in Rp with p fixed and
covariance Σ. Define

Σ̂ :=
1

n

n∑
i=1

XiX
>
i .

By the Law of Large Numbers, ||Σ̂− Σ||2 → 0 almost surely. In addition, by Weyl’s inequality,

|λi(Σ̂)− λi(Σ)| ≤ ||Σ̂− Σ||2,

so that the eigenvalues of Σ̂ are tending to λi(Σ). We could have also used the continuous mapping
theorem since the eigenvalues are continuous functions of the entries of the matrix. Regardless, we see
that the eigenvalues of Σ̂ are tending towards the eigenvalues of Σ almost surely. In particular, there is no
randomness in the limit – if we picked an eigenvalue at random, it would just be a uniform distribution
on the eigenvalues of Σ. In particular, when Σ = Ip, all the eigenvalues are just 1, so the random
eigenvalue we’d pick would just be 1. This is contrast to the high-dimensional regime, in which if we
were to randomly pick an eigenvalue, we’d actually get a distribution.
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3.2 High dimensions

Primary source: RMT.

If you are concerned with the measure-theoretic aspects we are considering here, we can actually define
the double-array Xik and assume that the rows are iid, where we slowly “reveal” the upper left-hand
rectangle of this array at a rate with p � n.

We first state the Marcenko-Pastur Theorem.

Theorem 1. Let X1, ..., Xn ∈ Rp be random variables whose entries are independent identically dis-
tributed random variables with mean 0 and variance σ2 <∞. Define Yn := 1

nX>X ∈ Rp×p, where each

row of X is the Rp vector Xi. Let λ1, ...λp be the eigenvalues of Yn, and denote by F̂n their empirical

distribution. Assume p/n→ c ∈ (0,∞). Then F̂n → µ where µ is a probability measure of the form

µ(A) =

{
(1− 1

c )10∈A + ν1/c(A) c > 1

νc(A) 0 ≤ c ≤ 1

where dνc(x) := 1
2πσ2

√
(λ+(c)−x)(x−λ−(c))

cx for x ∈ [λ−, λ+] with λ± = σ2(1± c)2.

Let’s take a little to examine the statement of this theorem. First, if c > 1, it is clear that there has to
be point mass at zero, since the matrix is rank n < p. It follows that the fraction of zero eigenvalues
should be approximately 1− 1

c ≈
p−n
p , so that there are p− n zeros for each matrix (as expected). For

p < n (the more interesting case), we see that the pdf is compactly supported on the interval above, and
approximately looks peaked towards the lower half. when c = 1, the interval is simply [0, 4σ2], and the
density looks like a “quarter circle.”

Note that one can weaken the statement that the coordinates have the same variance and are iid. We can
actually assume that each Xi has a variance Σp, and then we neecd to assume that 1

pTrΣp → γ < ∞;

or, in other words, each different eigenvalue is O(1). Note that in the iid case with constant variance,
TrΣp = pσ2, so that γ = σ2.

What are the data-analytic consequences for this theorem? For a fixed data set, one might want to
normalize and examine a histogram of the eigenvalues of the covariance matrix; if this looks approximately
Marcenko-Pastur, one may need to be careful about what sort of techniques one is using, since classical
statistical methods may fail in this regime.

Loosely the proof will be as follows. Define sn as the Stieljes transform for F̂n. First, we show that
sn − Esn → 0 a.s. and pointwise. Then we show that Esn → sν where ν is the measure defined above,
again pointwise.

We will need a series of small lemmas. We only prove in the case c ≤ 1, and in the case that σ2 = 1
(the first is not without loss of generality, but the analysis is similar, and the second is without loss of
generality).

Lemma 1 (Stieljes Transform of the M-P Law). The Stieljes Transform of the M-P law above is given
by

sν(z) =
z + 1− c−

√
(z − 1− c2)2 − 4c

2z
.

Proof. I will use the inversion formula to prove this. Note that since in the inversion formula we have
an integral, by the Dominated Convergence Theorem we only need to show that the imaginary part of
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the Stieljes transform is equal to the pdf on any interval [a, b] in the support. To wit, we have

1

π
lim
y→0

Im

(
x+ iy − c−

√
(x+ iy − 1− c2)2 − 4c

2(x+ iy

)

=
1

2π
lim
y→0

Im

(
x+ iy − c−

√
(x+ iy − 1− c2)2 − 4c

x+ iy

)

=
1

2π
lim
y→0

Im

(
(x− iy)(x+ iy − c−

√
(x+ iy − 1− c2)2 − 4c)

x2 + y2

)

=
1

2π
lim
y→0

Im

(
x2 + y2 − cx+ iyc− (x− iy)

√
(x+ iy − 1− c2)2 − 4c

x2 + y2

)

=
1

2π
lim
y→0

Im

(
1 +
−cx+ iyc

x2 + y2
−

(x− iy)
√

(x+ iy − 1− c2)2 − 4c

x2 + y2

)

=
1

2π
lim
y→0

Im

(
−

(x− iy)
√

(x+ iy − 1− c2)2 − 4c

x2 + y2

)

=
1

2π
lim
y→0

Im

(
− (x− iy)

√
c4 − 2c2x+ 2c2 + x2 − 2x− 1− 2ic2y + i2xy − y2 − 2iy

x2 + y2

)

=
1

2π
Im

(
−
√
c4 − 2c2x+ 2c2 + x2 − 2x− 1

x

)

=
1

2π

√
−c4 + 2c2x− 2c2 − x2 + 2x+ 1

x

which factorizes to be the pdf.

This next lemma shows how we will characterize the Stieljes transform of the MP distribution. There
are only two possible solutions, and the only one with Im(z) > 0 is the one with the Stieljes Transform
desired.

Lemma 2. Consider the quadratic equation zS2 +(z−1+c)S+c = 0, where S = s(z). Then the unique
solution is s(z) = csν(z), where sν(z) is the Stieljes Transform of the Marcenko-Pastur distribution with
c = 1.

Now that we have the Stieljes transform desired and a characterization in terms of the quadratic equation,
the goal will be to write the formula for the sn(z) in terms of the equation above plus terms of order
o(1). Now we do some manipulations.

We first recall the Stieljes transform of the original matrix:

sn(z) =
1

p
Tr
(

(Yn − zI)
−1
)
,

where Yn = 1
n

∑n
i=1XiX

>
i , which are all p× p rank-one matrices. Define

Y(i)
n : = Yn −

1

n
XiX

>
i

=
1

n

∑
j 6=i

XjX
>
j ,

and the corresponding resolvents Gn = (Yn − zIp)−1, and G
(k)
n =

(
Y

(k)
n − zIp

)−1
.

Recall we are interested in 1
pTr(Gn(z)). We can derive the following facts.

Lemma 3.

X>k Gn(z)Xk =
X>k G

(k)
n (z)Xk

1 + 1
nX
>
k G

(k)
n (z)Xk
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Proof. First, note that

X>k G(k)
n (z)

(
Gn(z)

)−1
= X>k G(k)

n (z)

(
Yn − zIp

)
= X>k G(k)

n (z)

(
Y(k)

n − zIp +
1

n
XkX

>
k

)
= X>k G(k)

n (z)

(
Y(k)

n − zIp
)

+X>k G(k)
n (z)

(
1

n
XkX

>
k

)
= X>k +X>k G(k)

n (z)

(
1

n
XkX

>
k

)
=

[
1 +

1

n
X>k G(k)

n (z)Xk)

]
X>k .

Rearranging the resulting equation yields

X>k G(k)
n (z) =

[
1 +

1

n
X>k G(k)

n (z)Xk)

]
X>k Gn(z)

and multiplying on the left by the vector Xk yields

X>k G(k)
n (z)Xk =

[
1 +

1

n
X>k G(k)

n (z)Xk)

]
X>k Gn(z)Xk.

Rearranging gives the result.

Lemma 4.

1

p
Tr(Gn(z)) = − 1

nz

n∑
k=1

1

1 + 1
nX
>
k G

(k)
n (z)Xk

+ o(1)

Proof. Simply compute

1 =
1

p
Tr(Ip)

=
1

p
Tr

((
Yn − zI

)
Gn(z)

)
=

1

p
Tr

(
1

n

n∑
k=1

XkX
>
k Gn(z)− zGn(z)

)

=
1

p
Tr

(
1

n

n∑
k=1

XkX
>
k Gn(z)

)
− z

p
Tr

(
Gn(z)

)

=
1

p

1

n

n∑
k=1

Tr

(
XkX

>
k Gn(z)

)
− z

p
Tr

(
Gn(z)

)

=
1

p

1

n

n∑
k=1

Tr

(
X>k Gn(z)Xk

)
− z

p
Tr

(
Gn(z)

)

=
1

p

1

n

n∑
k=1

(
X>k Gn(z)Xk

)
− z

p
Tr

(
Gn(z)

)

=
1

p

1

n

n∑
k=1

(
X>k G

(k)
n (z)Xk

1 + 1
nX
>
k G

(k)
n (z)Xk

)
− z

p
Tr

(
Gn(z)

)
.
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Rearrange the equation to obtain

z

p
Tr

(
Gn(z)

)
=

1

p

1

n

n∑
k=1

(
X>k G

(k)
n (z)Xk

1 + 1
nX
>
k G

(k)
n (z)Xk

)
− 1

=
1

p

1

n

n∑
k=1

(
X>k G

(k)
n (z)Xk

1 + 1
nX
>
k G

(k)
n (z)Xk

)
− 1

n

1

p

n∑
k=1

p

=
1

p

1

n

n∑
k=1

(
X>k G

(k)
n (z)Xk

1 + 1
nX
>
k G

(k)
n (z)Xk

− p
)
.

Rearrange another time by multiplying through by p and modifying the p factor, we obtain

zTr

(
Gn(z)

)
=
p

n

n∑
k=1

( 1
pX
>
k G

(k)
n (z)Xk

1 + 1
nX
>
k G

(k)
n (z)Xk

− 1

)

= − p
n

n∑
k=1

(
1 + p−n

np X
>
k G

(k)
n (z)Xk

1− 1
nX
>
k G

(k)
n (z)Xk

)

= − p
n

n∑
k=1

(
1

1− 1
nX
>
k G

(k)
n (z)Xk

)
+
p

n

p− n
np

n∑
k=1

X>k G
(k)
n (z)Xk

1− 1
nX
>
k G

(k)
n (z)Xk

= − p
n

n∑
k=1

(
1

1− 1
nX
>
k G

(k)
n (z)Xk

)
+ o(1)

where the o(1) term comes from the fact that p/n→ c and p− n = o(np) and n, p→∞.

From here on, we assume p/n→ 1, since our o(1) term above will make not much difference. The result
holds for any p and n, but does not really reveal the heart of the problem.

Also, the notes I used as a main reference assume p = n.

Lemma 5.

P
[
| 1
n
X>k G(k)

n Xk −
1

n
Tr(G(k)

n (z))| ≥ ε
]
≤ C

n2
.

Hence, by the Borel-Cantelli Lemma, 1
nX
>
k G

(k)
n Xk − 1

nTr(G
(k)
n (z))→ 0 almost surely.

Note: proving this lemma requires a fourth moment Markov inequality and the fact that

E
(

1

n
X>k G(k)

n Xk −
1

n
Tr(G(k)

n (z))

)
= 0. (1)

I will skip the fourth moment markov inequality to avoid calculating fourth moments of big random
variables.

Showing that 1 holds is much easier. Note that since Y
(k)
n does not include the k-th vector Xk, it is

independent of it, so we have

E
1

n
X>k G(k)

n Xk =
1

n

n∑
j,l=1

E
(
Xk(j)Xk(l)

)
E

((
Y(k)

n − zI
)−1
jl

)

=
1

n

n∑
j=1

E

((
Y(k)

n − zI
)−1
jj

)

= E

(
1

n
Tr(G(k)

n z)

)
.

This next lemma is a bit of a technicality.
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Lemma 6. For all z ∈ C \ R,∣∣∣∣ 1nTr

(
G(k)

n (z)

)
− 1

n
Tr

(
Gn(z)

)∣∣∣∣ ≤ 1

n|Im(z)|
.

Proof. First, note that Yn =
∑n
i=1XiX

>
i and Y

(k)
n =

∑n
i=1XiX

>
i − XkX

>
k , or in the perhaps more

revealing way as

Yn = Y(k)
n +XkX

>
k ;

that is Yn is a rank-one perturbation of Y
(k)
n . Hence, by the Cauchy-Interlacing inequalities,

λk(Y(k)
n ) ≤ λk+1(Yn) ≤ λk+2(Y(k)

n );

λk(Yn) ≤ λk+1(Y(k)
n ) ≤ λk+2(Yn)

for 1 ≤ k ≤ n− 2. Now, recall Gn has the eigenvalues 1
λi(Yn)−z , so that

λk+2(G(k)
n ) ≤ λk+1(Gn) ≤ λk(G(k)

n );

λk+2(Gn) ≤ λk+1(G(k)
n ) ≤ λk(Gn).

Summing up over k = 1, ..., n gives that∣∣∣∣Tr

(
G(k)

n (z)

)
− Tr

(
Gn(z)

)∣∣∣∣ ≤ ∣∣∣∣ 1

λ1(Yn)− z

∣∣∣∣,
which is a Stieljes transform of just point mass at one point. Hence, the result follows by multiplying by
1
n and applying Proposition 1, part 3.

Proof Idea of Marcenko-Pastur Theorem. We see that

sn(z) : =
1

n
Tr(Gn(z))

= − 1

nz

n∑
k=1

1

1 + 1
nX
>
k G

(k)
n (z)Xk

+ o(1)

= − 1

nz

n∑
k=1

1

1 + 1
nTr

(
G

(k)
n (z)

) + o(1)

= −1

z

1

1 + 1
nTr

(
Gn(z)

) + o(1)

: = −1

z

1

1 + sn(z)
+ o(1).

We can rewrite this as

zs2n + zsn + 1 = o(1),

so that sn is tending towards the solution with positive imaginary part almost surely. Note we would
still have to take care of the o(1)’s above, but that will be the focus of the next section.

3.3 Proof Overview

Lots of the lemmas were mostly technical, so it seemed relevant to give the proof overview here.

Set sn(z) := 1
nTr(Gn(z)), the Stieljes transform of the empirical eigenvalue distribution, and sν(z) as

our limiting Stieljes Transform.

9



• We first characterized the Stieljes transform we wanted exactly (sν(z)) and showed it is a solution
to a quadratic (or some other pde perhaps)

• We then used a bit of matrix analysis and real analysis to rewrite sn(z) in terms we could understand

• After rewriting, we showed we could write sn(z) on either side of an equation with high probability
using essentially Markov bounds

• Assuming we had this equation, we showed that sn(z) approximately satisfies the quadratic above,
yielding to almost sure convergence of sn(z) to the Stieljes transform of our limiting distribution.

This technique is common for Stieljes-transform proofs. Another common method of proof is showing
that first the distribution is moment-determined, and then showing that all the moments converge; this
was the original method given by Wigner in his proof of the Semicircle Law. This involves lots of
combinatorial approximations to show that certain numbers converge; these can be quite tedious. We
mostly avoid this with the Stieljes transform method (except for our one particular bound).

4 Wigner Semicircle Law

We begin with a definition.

Definition 2 (Wigner matrix). A Wigner matrix A is a random Hermitian (symmetric) matrix with
the entries aij are mean zero and variance 1 iid for i 6= j, and the entries on the diagonal are real-valued,
independent, and iid with mean zero and variance 1. Furthermore, all entries are uniformly bounded by
some K.

Theorem 2. Suppose Wn is a sequence of n × n Wigner matrices, and let µn denote the empirical
spectral distribution of 1√

n
Wn. Then µn → µ weakly almost surely where µ is the measure associated to

the semicircle law

dµ =
1

2π

√
4− x2 |x| ≤ 2

where dµ is the radon-nikodym derivative (pdf) of µ with respect to Lebesgue measure.

The proof is almost exactly the same as the previous one. We will assume that the entries are bounded;
i.e. |
√
nWij | ≤ C for some C > 0. This is not strictly required, but involves a short truncation argument

(i.e. we can replace the matrices with their truncated versions almost surely). We will prove that the
convergence of µn → µ happens in probability, since higher moments are more difficult to bound.

First the proof shows that we have a similar characterization of the semicircle law in terms of some ODE,
plust some δn(z) term. The rest of the proof proceeds first by showing that δn(z) → 0 for any fixed
z ∈ C \ R. Since in the first section I focused on showing that we could get such a characterization, in
this section, I will show that δn(z) (the analogue of our o(1) term in the previous proof) actually does
go to zero.

The proof follows Anderson et al. (2010).

Proof. Define sn(z) similarly as before (the Stieljes Transform of µn), and Gn(z) := (Wn− zI)−1. Then
by Cramer’s rule,

(Wn − zI)−1(i, i) =
det(W (i) − zIn−1)

det(W − zI)
,

where W (i) is the principal submatrix. Furthermore,

W − zIn =

(
W (n) − zIn−1 wn

w>n W (n, n)− z

)
.

10



By a classic property of determinants, we see that

det(W − zIn) = det(W (n) − zIn−1) det(W (n, n)− z − w>n (W (n) − zIn−1)−1wn).

Plugging this in above, we see that

(Wn − zI)−1(n, n) =
det(W (i) − zIn−1)

det(W − zI)

=
det(W i − zIn−1)

det(W (n) − zIn−1) det(W (n, n)− z − w>n (W (n) − zIn−1)−1wn)

=
1

det(W (n, n)− z − w>n (W (n) − zIn−1)−1wn)

=
1

W (n, n)− z − w>n (W (n) − zIn−1)−1wn
,

since it is just a number. Hence, we have a characterization for the diagonals of (Wn − zI)−1 since we
only need to replace wn above with wi and W (n) above with W (i) to get the characterization for any i.

We will now completely switch notation from above, but it shouldn’t make much a difference.

Let αk k’th column of W and α̃k be the n − 1 dimensional vector obtained from αk by erasing the

entry αk(k), and let W
(i)
n the matrix Wn with the i’th row and column removed. Using the above

characterization, we see that

1

n
sn(z) =

1

n

n∑
i=1

1

−z − α̃>i (W
(i)
n − zIn−1)α̃i

= − 1

z + 1
nsn(z)

− δn(z),

where

δn(z) :=
1

n

n∑
i=1

εi,n
(−z − n−1sn(z) + εi,n)(−z − n−1sn(z))

and
εi,n = n−1sn(z)− α̃>i (W (i)

n − zIn−1)α̃i.

First, note that term in the denominator −z−n−1sn(z) has modulus at least Im(z) by a similar argument
to the proof of Lemma 6. Hence, if supi≤n |εi,n| → 0 in probability, then it will also be true that δi → 0
in probability.

Let the matrix W̄
(i)
n be the same matrix as W

(i)
n except with the i′th row and column set to zero (instead

of removed). Then their eigenvalues coincide, so again using similar logic to the proof of Lemma 6,∣∣∣∣ 1nTr(W̄ (i)
n − zIn)−1 − 1

n
Tr(W (i)

n − zIn−1)−1
∣∣∣∣ ≤ 1

nIm(z)
.

Now, let λ
(i)
1 ≤ ...λ

(i)
n be the eigenvalues of W̄

(i)
n , and let λ1 ≤ ... ≤ λn be the eigenvalues of Wn. Then

note that (W̄
(i)
n − zIn)−1 is a principle submatrix of Gn, so

1

n

∣∣∣∣TrGn − Tr(W̄ (i)
n − zIn)−1

∣∣∣∣ ≤ 1

nIm(z)2

n∑
k=1

|λ(i)k − λk|

≤ 1

Im(z)2

(
1

n2

n∑
k=1

|λ(i)k − λk|
2

)1/2

≤ 1

Im(z)2

(
2

n2

n∑
k=1

Wn(i, k)2
)1/2
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by the Hoffman-Wielandt inequality. Since all of the Wn(i, k) are bounded by C/
√
n, this term tends to

zero. Hence, we only need to worry that sup |ε̄i,n| tends to zero in probability, where

ε̄i,n = α̃>i B
(i)
n (z)α̃i −

1

n
TrB(i)

n (z)

=
1

n

n−1∑
k=1

([√
nα̃i(k)

]2
− 1

)
B(i)
n (z)(k, k) +

n−1∑
k,k′=1,k 6=k′

α̃i(k)α̃i(k
′)B(i)

n (z)(k, k′)

: = ε̄diagi,n + ε̄offi,n

and B
(i)
n (z) = (W

(i)
n − zIn−1)−1.

Note that α̃i is independent of B
(i)
n (z) (since it is the missing row/column) and has zero-mean and

variance 1/n, so by conditioning ofn Fi,n, the σ-field generated by W i
n, Eε̄i,n = 0. In addition, since

1

n
Tr(B(i)

n (z)2) ≤ 1

Im(z)2
,

and the random variables
√
nαi(k) are uniformly bounded, we have that Ē|εdiagi,n |4 ≤ c1n

−2 for some
constant c1 dependent on z and C, the bounding constant. Through a similar argument, we can see
E|ε̄offi,n |4 ≤ c2n

−2 for some c2 dependent again on z and C. From this, we see that supi≤n |εi,n(z)| → 0
by Chebyshev’s inequality and a union bound.
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