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Basic Probability

Probability Theory formalizes the notion of chance in
various problems
We will not be discussing formal probability theory, which is
typically covered in an AMS course.

Instead, just know that probability assigns numbers
between 0 and 1 to events
Most of this course will discuss simple probability
In what follows, a random variable is just something whose
outcome is random
Examples:

The outcome of a coin flip
The sum of rolling two dice
A graph with random edges
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Bernoulli Random Variables

A Bernoulli random variable X is a random variable
satisfying

P(X = 1) = p.

Examples of Bernoulli random variables:
X = 1 if you flip a coin and it lands heads (what is p?)
X = 1 if you roll a three on a single die (what is p?)
X = 1 if you roll two dice and their sum is 7 (what is p?)
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Binomial Random Variables

A Binomial random variable is just the sum of n
independent Bernoulli random variables with probability p

Examples:
The number of times it rains in six days
The number of times your coin flip lands heads in 12 flips
Nonexample: the number of coin flips needed to get 12
heads (why?)
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Normal (Gaussian) Random Variables

A normal random variable is a random variable that
formalizes the notion of bell curve

It has two parameters: the mean µ and standard deviation
σ

Plays a central role in probability theory, statistics, and
even partial differential equations
A Normal random variable is a continuous random
variable, meaning P(X = c) = 0 for any real number c
Instead, the Gaussian distribution satisfies

P(X ≤ µ) =
1
2
.
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Gaussian Distribution

Figure: source

https://towardsdatascience.com/understanding-the-68-95-99-7-rule-for-a-normal-distribution-b7b7cbf760c2
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Other Random Variables/Distributions

Poisson (counts)
Exponential (times)
Geometric (first time something happens)
Gamma, Weibull, uniform
...
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Expected Value

The expected value formalizes the notion of a mean.

The formula for a discrete random variable is

EX =
∑

all values of X

kP(X = k).

Example:
Bernoulli distribution:

EX = 1P(X = 1) + 0P(X = 0)

= p
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Variance

Variance is a measure of spread of a random variable

Define the second moment:

EX 2 =
∑

all values of X

k2P(X = k).

The variance is defined as:

EX 2 − (EX )2.

Bernoulli Distribution:

EX 2 = 12P(X = 1) + 02P(x = 0)

= p

=⇒ Var(X ) = p − p2

= p(1− p).
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Higher Moments

Higher moments include the skew (third moment) and
kurtosis (fourth moment)

General formula:

EX p =
∑

all values of X

kpP(X = k)
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Independence

Two events A and B are independent if
P(A and B) = P(A)P(B).

Two random variables are independent if the above holds
for all possible events.
Covariance:

Cov(X ,Y ) =
∑

all values k of X and j of Y

{
(k − EX )(j − EY )

× P(X = k andY = j)
}

Correlation:

Corr(X ,Y ) =
CovX ,Y√

Var(X )Var(Y )
.

Uncorrelated does not imply independent!



Probability Statistics Probability and Statistics for Random Graphs Primer

Independence

Two events A and B are independent if
P(A and B) = P(A)P(B).
Two random variables are independent if the above holds
for all possible events.

Covariance:

Cov(X ,Y ) =
∑

all values k of X and j of Y

{
(k − EX )(j − EY )

× P(X = k andY = j)
}

Correlation:

Corr(X ,Y ) =
CovX ,Y√

Var(X )Var(Y )
.

Uncorrelated does not imply independent!



Probability Statistics Probability and Statistics for Random Graphs Primer

Independence

Two events A and B are independent if
P(A and B) = P(A)P(B).
Two random variables are independent if the above holds
for all possible events.
Covariance:

Cov(X ,Y ) =
∑

all values k of X and j of Y

{
(k − EX )(j − EY )

× P(X = k andY = j)
}

Correlation:

Corr(X ,Y ) =
CovX ,Y√

Var(X )Var(Y )
.

Uncorrelated does not imply independent!



Probability Statistics Probability and Statistics for Random Graphs Primer

Independence

Two events A and B are independent if
P(A and B) = P(A)P(B).
Two random variables are independent if the above holds
for all possible events.
Covariance:

Cov(X ,Y ) =
∑

all values k of X and j of Y

{
(k − EX )(j − EY )

× P(X = k andY = j)
}

Correlation:

Corr(X ,Y ) =
CovX ,Y√

Var(X )Var(Y )
.

Uncorrelated does not imply independent!



Probability Statistics Probability and Statistics for Random Graphs Primer

Independence

Two events A and B are independent if
P(A and B) = P(A)P(B).
Two random variables are independent if the above holds
for all possible events.
Covariance:

Cov(X ,Y ) =
∑

all values k of X and j of Y

{
(k − EX )(j − EY )

× P(X = k andY = j)
}

Correlation:

Corr(X ,Y ) =
CovX ,Y√

Var(X )Var(Y )
.

Uncorrelated does not imply independent!



Probability Statistics Probability and Statistics for Random Graphs Primer

Outline

1 Probability

2 Statistics

3 Probability and Statistics for Random Graphs Primer



Probability Statistics Probability and Statistics for Random Graphs Primer

Statistics vs. Probability

Probability studies properties of distributions assuming one
knows the distribution

Statistics studies how to learn the distribution
Statistics needs tools from probability and vice versa
(though slightly less so)
In practice, we do not know the Bernoulli parameter p!
How do we estimate it?
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Estimators

Suppose one has observations from a distribution with
some parameter θ (example: Binomial distribution with
parameter θ = p)

An estimator, formally, is any function of the data, but really
you want to be somewhat intelligent about it
Sample mean for observations {Xi}ni=1:

X̄ :=
1
n

n∑
i=1

Xi
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Central Limit Theorem

Let X1, . . . ,Xn be iid (independent, identically distributed).

Let µ = EX and σ2 = Var(X ).
Then as n→∞

√
n

X̄ − µ
σ
→ N(0,1).

I.e. X̄ ≈ N(µ, σ2) (bell curve centered at µ with standard
deviation σ)
R Example
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Erdos-Renyi Random Graphs

An undirected Erdos-Renyi random graph satisfies

P(Aij = 1) = p

independently for all i < j with Aji = Aij for j < i .

Each edge is generated with probability p.
What is the distribution of the degree of the i ’th vertex?
How might we estimate p?
R Example
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Erdos-Renyi Random Graphs

What is EA?

(EA)ij = p (i 6= j) =⇒ EA =


0 p p · · · p
p 0 p · · · p

p p 0 · · ·
...

p · · · · · · . . . p
p · · · · · · p 0


What if we allow self-loops?

EA =

p · · · p
...

. . .
...

p · · · p

 = p11> 1 = vector of all ones

R Example
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Stochastic Blockmodels

Generalization of Erdos-Renyi Random Graph

Suppose there are K communities.
Vertex i and j belong to community l and k respectively.
Then A is a stochastic blockmodel if

P(Aij = 1) = Blk .

Special case: one community B11 = p
One community SBM = Erdos-Renyi
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Stochastic Blockmodels

With self-loops, what is EA? (assume two communities and
organized by communities)

EA =



B11 · · · B11 B12 · · · B12
...

. . .
...

...
. . .

...
B11 · · · B11 B12 · · · B12
B21 · · · B21 B22 · · · B22

...
. . .

...
...

. . .
...

B21 · · · B21 B22 · · · B22


R Example
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