Probability and Statistics for Random Graphs Primer

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HEART: Statistics and Data Science With Networks

Joshua Agterberg

Johns Hopkins University

Fall 2021

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Probability and Statistics for Random Graphs Primer

Probability and Statistics for Random Graphs Primer $_{\rm OOOOO}$

2 Statistics

Probability and Statistics for Random Graphs Primer

▲□▶▲□▶▲□▶▲□▶ □ のへで

Probability o●oooooooo	Statistics 0000	Probability and Statistics for Random Graphs Primer
Basic Probability		

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Probability o●oooooooo	Statistics 0000	Probability and Statistics for Random Graphs Primer
Basic Probability		

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Instead, just know that probability assigns numbers between 0 and 1 to *events*

Probability	Statistics	Probability and Statistics for Random Graphs Prime
000000000		

Probability Theory formalizes the notion of chance in various problems

Basic Probability

• We will not be discussing formal probability theory, which is typically covered in an AMS course.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Instead, just know that probability assigns numbers between 0 and 1 to *events*
- Most of this course will discuss simple probability

Probability	Statistics	Probability and Statistics for Random Graphs
000000000		

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.
- Instead, just know that probability assigns numbers between 0 and 1 to *events*
- Most of this course will discuss simple probability
- In what follows, a *random variable* is just something whose outcome is random

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Probability	Statistics	Probability and Statistics for Random
000000000		

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.

Graphs Primer

(日) (日) (日) (日) (日) (日) (日)

- Instead, just know that probability assigns numbers between 0 and 1 to *events*
- Most of this course will discuss simple probability
- In what follows, a *random variable* is just something whose outcome is random
- Examples:
 - The outcome of a coin flip
 - The sum of rolling two dice
 - A graph with random edges

Statistics

Probability and Statistics for Random Graphs Primer $_{\rm OOOOO}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bernoulli Random Variables

$$\mathbb{P}(X=1)=p.$$

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bernoulli Random Variables

$$\mathbb{P}(X=1)=p.$$

- Examples of Bernoulli random variables:
 - X = 1 if you flip a coin and it lands heads (what is p?)

Statistics

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bernoulli Random Variables

$$\mathbb{P}(X=1)=p.$$

- Examples of Bernoulli random variables:
 - X = 1 if you flip a coin and it lands heads (what is p?)
 - X = 1 if you roll a three on a single die (what is p?)

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bernoulli Random Variables

$$\mathbb{P}(X=1)=p.$$

- Examples of Bernoulli random variables:
 - X = 1 if you flip a coin and it lands heads (what is p?)
 - X = 1 if you roll a three on a single die (what is p?)
 - X = 1 if you roll two dice and their sum is 7 (what is p?)

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Binomial Random Variables

 A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p
- Examples:
 - The number of times it rains in six days

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p
- Examples:
 - The number of times it rains in six days
 - The number of times your coin flip lands heads in 12 flips

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p
- Examples:
 - The number of times it rains in six days
 - The number of times your coin flip lands heads in 12 flips
 - Nonexample: the number of coin flips needed to get 12 heads (why?)

Probability	
00000000000000000	

Probability and Statistics for Random Graphs Primer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Normal (Gaussian) Random Variables

• A normal random variable is a random variable that formalizes the notion of *bell curve*

Probability	
00000000000000000	

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of *bell curve*
- It has two parameters: the mean μ and standard deviation

 σ

Probability	
00000000000000000	

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of *bell curve*
- It has two parameters: the mean μ and standard deviation σ
- Plays a central role in probability theory, statistics, and even partial differential equations

Probability	
00000000000000000	

Probability and Statistics for Random Graphs Primer

(日) (日) (日) (日) (日) (日) (日)

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of *bell curve*
- It has two parameters: the mean μ and standard deviation σ
- Plays a central role in probability theory, statistics, and even partial differential equations
- A Normal random variable is a *continuous* random variable, meaning $\mathbb{P}(X = c) = 0$ for any real number c

Probability	
000000000000	

Probability and Statistics for Random Graphs Primer

(日) (日) (日) (日) (日) (日) (日)

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of *bell curve*
- It has two parameters: the mean μ and standard deviation σ
- Plays a central role in probability theory, statistics, and even partial differential equations
- A Normal random variable is a *continuous* random variable, meaning $\mathbb{P}(X = c) = 0$ for any real number c
- Instead, the Gaussian distribution satisfies

$$\mathbb{P}(X \leq \mu) = \frac{1}{2}.$$

Statistics

Probability and Statistics for Random Graphs Primer

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Gaussian Distribution

Figure: source

Statistics

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Other Random Variables/Distributions

- Poisson (counts)
- Exponential (times)
- Geometric (first time something happens)
- Gamma, Weibull, uniform
- ...

Probability oocoooooooo	Statistics 0000	Probability and Statistics for Random Graphs Primer
Expected Value		

• The expected value formalizes the notion of a mean.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- The expected value formalizes the notion of a mean.
- The formula for a discrete random variable is

$$\mathbb{E}X = \sum_{\text{all values of } X} k \mathbb{P}(X = k).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Probability ooooooo●ooo	Statistics 0000	Probability and Statistics for Random Graphs Primer
Expected Value		

- The expected value formalizes the notion of a mean.
- The formula for a discrete random variable is

$$\mathbb{E} X = \sum_{\text{all values of } X} k \mathbb{P}(X = k).$$

• Example:

Bernoulli distribution:

$$\mathbb{E}X = \mathbb{1P}(X = 1) + \mathbb{0P}(X = 0)$$
$$= p$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Probability	
0000000000000	

Probability and Statistics for Random Graphs Primer

Variance

• Variance is a measure of *spread* of a random variable

Probability ○○○○○○○●○○	Statistics	Probability and Statistics for Random Graphs Primer
Variance		

- Variance is a measure of *spread* of a random variable
- Define the second moment:

$$\mathbb{E}X^2 = \sum k^2 \mathbb{P}(X=k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

all values of X

Probability ○○○○○○○●○○	Statistics	Probability and Statistics for Random Graphs Primer
Variance		

- Variance is a measure of *spread* of a random variable
- Define the second moment:

$$\mathbb{E}X^2 = \sum_{\text{all values of } X} k^2 \mathbb{P}(X = k).$$

• The variance is defined as:

$$\mathbb{E}X^2-(\mathbb{E}X)^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Probability ○○○○○○○●○○	Statistics	Probability and Statistics for Random Graphs Primer
Variance		

- Variance is a measure of *spread* of a random variable
- Define the second moment:

$$\mathbb{E}X^2 = \sum_{\text{all values of } X} k^2 \mathbb{P}(X = k).$$

The variance is defined as:

$$\mathbb{E}X^2-(\mathbb{E}X)^2.$$

• Bernoulli Distribution:

$$\mathbb{E}X^2 = 1^2 \mathbb{P}(X = 1) + 0^2 \mathbb{P}(x = 0)$$
$$= p$$
$$\implies \operatorname{Var}(X) = p - p^2$$
$$= p(1 - p).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Statistics

Probability and Statistics for Random Graphs Primer $_{\rm OOOOO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Higher Moments

• Higher moments include the *skew* (third moment) and *kurtosis* (fourth moment)

Probability and Statistics for Random Graphs Primer $_{\rm OOOOO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Higher Moments

- Higher moments include the *skew* (third moment) and *kurtosis* (fourth moment)
- General formula:

$$\mathbb{E}X^{p} = \sum_{\text{all values of } X} k^{p} \mathbb{P}(X = k)$$

Probability oooooooooo	Statistics	Probability and Statistics for Random Graphs Primer
Independence		

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Two events A and B are independent if $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A)\mathbb{P}(B)$.

000000000	
Independence	

- Two events A and B are independent if $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A)\mathbb{P}(B).$
- Two random variables are independent if the above holds for all possible events.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Probability oococoocoo	Statistics	Probability and Statistics for Random Graphs Primer
Independence		

- Two events A and B are independent if $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A)\mathbb{P}(B).$
- Two random variables are independent if the above holds for all possible events.
- Covariance:

$$\operatorname{Cov}(X, Y) = \sum_{\text{all values } k \text{ of } X \text{ and } j \text{ of } Y} \left\{ (k - \mathbb{E}X)(j - \mathbb{E}Y) \\ \times \mathbb{P}(X = k \text{ and } Y = j) \right\}$$

1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Probability oocooooooo●	Statistics 0000	Probability and Statistics for Random Graphs Primer
Independence		

- Two events A and B are independent if $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A)\mathbb{P}(B).$
- Two random variables are independent if the above holds for all possible events.
- Covariance:

$$\operatorname{Cov}(X, Y) = \sum_{\text{all values } k \text{ of } X \text{ and } j \text{ of } Y} \left\{ (k - \mathbb{E}X)(j - \mathbb{E}Y) \\ \times \mathbb{P}(X = k \text{ and } Y = j) \right\}$$

1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Orrelation:

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov} X, Y}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

0000000000	0000	
Independence		

- Two events A and B are independent if $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A)\mathbb{P}(B).$
- Two random variables are independent if the above holds for all possible events.
- Covariance:

$$\operatorname{Cov}(X, Y) = \sum_{\text{all values } k \text{ of } X \text{ and } j \text{ of } Y} \left\{ (k - \mathbb{E}X)(j - \mathbb{E}Y) \\ \times \mathbb{P}(X = k \text{ and } Y = j) \right\}$$

1

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Orrelation:

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov} X, Y}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

• Uncorrelated does not imply independent!

Probability and Statistics for Random Graphs Primer $_{\rm OOOOO}$

Outline

3 Probability and Statistics for Random Graphs Primer

・ロト・日本・モート ヨー うへで

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Statistics vs. Probability

 Probability studies properties of distributions assuming one knows the distribution

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Probability studies properties of distributions assuming one *knows the distribution*
- Statistics studies how to learn the distribution

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Probability studies properties of distributions assuming one *knows the distribution*
- Statistics studies how to *learn the distribution*
- Statistics needs tools from probability and vice versa (though slightly less so)

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Probability studies properties of distributions assuming one *knows the distribution*
- Statistics studies how to *learn the distribution*
- Statistics needs tools from probability and vice versa (though slightly less so)
- In practice, we do not know the Bernoulli parameter *p*!

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Probability studies properties of distributions assuming one *knows the distribution*
- Statistics studies how to *learn the distribution*
- Statistics needs tools from probability and vice versa (though slightly less so)
- In practice, we do not know the Bernoulli parameter *p*!
- How do we estimate it?

Probability 0000000000	Statistics ○○●○	Probability and Statistics for Random
Estimators		

 Suppose one has observations from a distribution with some parameter θ (example: Binomial distribution with parameter θ = p)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Estimators

- Suppose one has observations from a distribution with some parameter θ (example: Binomial distribution with parameter θ = p)
- An *estimator*, formally, is any function of the data, but really you want to be somewhat intelligent about it

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Estimators

- Suppose one has observations from a distribution with some parameter θ (example: Binomial distribution with parameter θ = p)
- An *estimator*, formally, is any function of the data, but really you want to be somewhat intelligent about it
- Sample mean for observations $\{X_i\}_{i=1}^n$:

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$

 Probability
 Statistics
 Probability and Statistics for Random Graphs Primer

 00000000000
 0000
 00000

Central Limit Theorem

• Let X_1, \ldots, X_n be iid (independent, identically distributed).

Probability oooooooooo	Statistics ○○○●	Probability and Statistics for Random Graphs Primer

• Let X_1, \ldots, X_n be iid (independent, identically distributed).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Let $\mu = \mathbb{E}X$ and $\sigma^2 = \operatorname{Var}(X)$.

Probability 0000000000	Statistics	Probability and Statistics for Random Graphs F

- Let X_1, \ldots, X_n be iid (independent, identically distributed).
- Let $\mu = \mathbb{E}X$ and $\sigma^2 = \operatorname{Var}(X)$.
- Then as $n \to \infty$

$$\sqrt{n}rac{ar{m{X}}-\mu}{\sigma}
ightarrowm{N}(0,1).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Probability	Statistics	Probability and Statistics for Random Grap
	0000	

• Let X_1, \ldots, X_n be iid (independent, identically distributed).

is Primer

- Let $\mu = \mathbb{E}X$ and $\sigma^2 = \operatorname{Var}(X)$.
- Then as $n \to \infty$

$$\sqrt{n}rac{ar{X}-\mu}{\sigma}
ightarrow N(0,1).$$

I.e. X
 [×] ≈ N(μ, σ²) (bell curve centered at μ with standard deviation σ)

Probability	Statistics	Probability and Statistics for Random Gr
	0000	

• Let X_1, \ldots, X_n be iid (independent, identically distributed).

ohs Primer

- Let $\mu = \mathbb{E}X$ and $\sigma^2 = \operatorname{Var}(X)$.
- Then as $n \to \infty$

$$\sqrt{n}rac{ar{X}-\mu}{\sigma}
ightarrow N(0,1).$$

- I.e. X
 [×] ≈ N(μ, σ²) (bell curve centered at μ with standard deviation σ)
- R Example

Statistics

Probability and Statistics for Random Graphs Primer •0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

Probability and Statistics for Random Graphs Primer

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Erdos-Renyi Random Graphs

An undirected Erdos-Renyi random graph satisfies

$$\mathbb{P}(A_{ij}=1)=p$$

Statistics

Probability and Statistics for Random Graphs Primer $_{\odot \bullet \odot \odot \odot}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Erdos-Renyi Random Graphs

An undirected Erdos-Renyi random graph satisfies

$$\mathbb{P}(A_{ij}=1)=p$$

independently for all i < j with $A_{ji} = A_{ij}$ for j < i.

• Each edge is generated with probability p.

Probability and Statistics for Random Graphs Primer

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Erdos-Renyi Random Graphs

An undirected Erdos-Renyi random graph satisfies

$$\mathbb{P}(A_{ij}=1)=p$$

- Each edge is generated with probability *p*.
- What is the distribution of the degree of the *i*'th vertex?

Probability and Statistics for Random Graphs Primer $_{\odot \bullet \odot \odot \odot}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Erdos-Renyi Random Graphs

An undirected Erdos-Renyi random graph satisfies

$$\mathbb{P}(A_{ij}=1)=p$$

- Each edge is generated with probability *p*.
- What is the distribution of the degree of the *i*'th vertex?
- How might we estimate p?

Probability and Statistics for Random Graphs Primer $_{\odot \bullet \odot \odot \odot}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Erdos-Renyi Random Graphs

An undirected Erdos-Renyi random graph satisfies

$$\mathbb{P}(A_{ij}=1)=p$$

- Each edge is generated with probability *p*.
- What is the distribution of the degree of the *i*'th vertex?
- How might we estimate p?
- R Example

Probability

Probability and Statistics for Random Graphs Primer $_{\rm OO} \bullet _{\rm OO}$

Erdos-Renyi Random Graphs

• What is $\mathbb{E}A$?

Statistics

Probability and Statistics for Random Graphs Primer $_{\rm OO} \bullet _{\rm OO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Erdos-Renyi Random Graphs

• What is $\mathbb{E}A$?

$$(\mathbb{E}A)_{ij} = p \ (i \neq j) \Longrightarrow \mathbb{E}A = \begin{pmatrix} 0 & p & p & \cdots & p \\ p & 0 & p & \cdots & p \\ p & p & 0 & \cdots & \vdots \\ p & \cdots & \cdots & p & p \end{pmatrix}$$

Statistics

Probability and Statistics for Random Graphs Primer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Erdos-Renyi Random Graphs

• What is $\mathbb{E}A$?

$$(\mathbb{E}A)_{ij} = p \ (i \neq j) \Longrightarrow \mathbb{E}A = \begin{pmatrix} 0 & p & p & \cdots & p \\ p & 0 & p & \cdots & p \\ p & p & 0 & \cdots & \vdots \\ p & \cdots & \cdots & p & p \end{pmatrix}$$

What if we allow self-loops?

Statistics

Probability and Statistics for Random Graphs Primer

Erdos-Renyi Random Graphs

• What is $\mathbb{E}A$?

$$(\mathbb{E}A)_{ij} = p \ (i \neq j) \Longrightarrow \mathbb{E}A = \begin{pmatrix} 0 & p & p & \cdots & p \\ p & 0 & p & \cdots & p \\ p & p & 0 & \cdots & \vdots \\ p & \cdots & \cdots & p & p \end{pmatrix}$$

What if we allow self-loops?

$$\mathbb{E} A = \begin{pmatrix} p & \cdots & p \\ \vdots & \ddots & \vdots \\ p & \cdots & p \end{pmatrix} = p \mathbf{1} \mathbf{1}^\top \qquad \mathbf{1} = \text{vector of all ones}$$

R Example

Statistics

Probability and Statistics for Random Graphs Primer $_{\text{OOO} \bullet \text{O}}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Stochastic Blockmodels

• Generalization of Erdos-Renyi Random Graph

Probability and Statistics for Random Graphs Primer $_{\text{OOO} \bullet \text{O}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Generalization of Erdos-Renyi Random Graph
- Suppose there are *K* communities.

Probability and Statistics for Random Graphs Primer $_{\text{OOO} \bullet \text{O}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Generalization of Erdos-Renyi Random Graph
- Suppose there are *K* communities.
- Vertex *i* and *j* belong to community *l* and *k* respectively.

Probability and Statistics for Random Graphs Primer $_{\text{OOO} \bullet \text{O}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Generalization of Erdos-Renyi Random Graph
- Suppose there are *K* communities.
- Vertex *i* and *j* belong to community *l* and *k* respectively.
- Then A is a stochastic blockmodel if

$$\mathbb{P}(A_{ij}=1)=B_{lk}.$$

Probability and Statistics for Random Graphs Primer $_{\text{OOO} \bullet \text{O}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph
- Suppose there are *K* communities.
- Vertex *i* and *j* belong to community *l* and *k* respectively.
- Then A is a stochastic blockmodel if

$$\mathbb{P}(A_{ij}=1)=B_{lk}.$$

• Special case: one community $B_{11} = p$

Probability and Statistics for Random Graphs Primer $_{\text{OOO} \bullet \text{O}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Generalization of Erdos-Renyi Random Graph
- Suppose there are *K* communities.
- Vertex *i* and *j* belong to community *l* and *k* respectively.
- Then A is a stochastic blockmodel if

$$\mathbb{P}(A_{ij}=1)=B_{lk}.$$

- Special case: one community $B_{11} = p$
- One community SBM = Erdos-Renyi

Statistics

Probability and Statistics for Random Graphs Primer $_{\texttt{OOOO}}\bullet$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Stochastic Blockmodels

With self-loops, what is $\mathbb{E}A$? (assume two communities and organized by communities)

Probability ooooooooooo	Statistics	Probability and Statistics for Random Graphs Primer
- · · -		

Stochastic Blockmodels

With self-loops, what is $\mathbb{E}A$? (assume two communities and organized by communities)

(ロ) (同) (三) (三) (三) (○) (○)

Probability ooooooooooo	Statistics	Probability and Statistics for Random Graphs Primer

Stochastic Blockmodels

With self-loops, what is $\mathbb{E}A$? (assume two communities and organized by communities)

R Example

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?