HEART: Statistics and Data Science With Networks

Joshua Agterberg

Johns Hopkins University

Fall 2021

Outline

(1) Probability
(2) Statistics
(3) Probability and Statistics for Random Graphs Primer

Outline

3 Probability and Statistics for Random Graphs Primer

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.
- Instead, just know that probability assigns numbers between 0 and 1 to events

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.
- Instead, just know that probability assigns numbers between 0 and 1 to events
- Most of this course will discuss simple probability

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.
- Instead, just know that probability assigns numbers between 0 and 1 to events
- Most of this course will discuss simple probability
- In what follows, a random variable is just something whose outcome is random

Basic Probability

- Probability Theory formalizes the notion of chance in various problems
- We will not be discussing formal probability theory, which is typically covered in an AMS course.
- Instead, just know that probability assigns numbers between 0 and 1 to events
- Most of this course will discuss simple probability
- In what follows, a random variable is just something whose outcome is random
- Examples:
- The outcome of a coin flip
- The sum of rolling two dice
- A graph with random edges

Bernoulli Random Variables

- A Bernoulli random variable X is a random variable satisfying

$$
\mathbb{P}(X=1)=p
$$

Bernoulli Random Variables

- A Bernoulli random variable X is a random variable satisfying

$$
\mathbb{P}(X=1)=p
$$

- Examples of Bernoulli random variables:
- $X=1$ if you flip a coin and it lands heads (what is p ?)

Bernoulli Random Variables

- A Bernoulli random variable X is a random variable satisfying

$$
\mathbb{P}(X=1)=p
$$

- Examples of Bernoulli random variables:
- $X=1$ if you flip a coin and it lands heads (what is p ?)
- $X=1$ if you roll a three on a single die (what is p ?)

Bernoulli Random Variables

- A Bernoulli random variable X is a random variable satisfying

$$
\mathbb{P}(X=1)=p
$$

- Examples of Bernoulli random variables:
- $X=1$ if you flip a coin and it lands heads (what is p ?)
- $X=1$ if you roll a three on a single die (what is p ?)
- $X=1$ if you roll two dice and their sum is 7 (what is p ?)

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p
- Examples:
- The number of times it rains in six days

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p
- Examples:
- The number of times it rains in six days
- The number of times your coin flip lands heads in 12 flips

Binomial Random Variables

- A Binomial random variable is just the sum of n independent Bernoulli random variables with probability p
- Examples:
- The number of times it rains in six days
- The number of times your coin flip lands heads in 12 flips
- Nonexample: the number of coin flips needed to get 12 heads (why?)

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of bell curve

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of bell curve
- It has two parameters: the mean μ and standard deviation σ

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of bell curve
- It has two parameters: the mean μ and standard deviation σ
- Plays a central role in probability theory, statistics, and even partial differential equations

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of bell curve
- It has two parameters: the mean μ and standard deviation σ
- Plays a central role in probability theory, statistics, and even partial differential equations
- A Normal random variable is a continuous random variable, meaning $\mathbb{P}(X=c)=0$ for any real number c

Normal (Gaussian) Random Variables

- A normal random variable is a random variable that formalizes the notion of bell curve
- It has two parameters: the mean μ and standard deviation σ
- Plays a central role in probability theory, statistics, and even partial differential equations
- A Normal random variable is a continuous random variable, meaning $\mathbb{P}(X=c)=0$ for any real number c
- Instead, the Gaussian distribution satisfies

$$
\mathbb{P}(X \leq \mu)=\frac{1}{2}
$$

Gaussian Distribution

Figure: source

Other Random Variables/Distributions

- Poisson (counts)
- Exponential (times)
- Geometric (first time something happens)
- Gamma, Weibull, uniform
- ...

Expected Value

- The expected value formalizes the notion of a mean.

Expected Value

- The expected value formalizes the notion of a mean.
- The formula for a discrete random variable is

$$
\mathbb{E} X=\sum_{\text {all values of } X} k \mathbb{P}(X=k) .
$$

Expected Value

- The expected value formalizes the notion of a mean.
- The formula for a discrete random variable is

$$
\mathbb{E} X=\sum_{\text {all values of } X} k \mathbb{P}(X=k) .
$$

- Example:
- Bernoulli distribution:

$$
\begin{aligned}
\mathbb{E} X & =1 \mathbb{P}(X=1)+0 \mathbb{P}(X=0) \\
& =p
\end{aligned}
$$

Variance

- Variance is a measure of spread of a random variable

Variance

- Variance is a measure of spread of a random variable
- Define the second moment:

$$
\mathbb{E} X^{2}=\sum_{\text {all values of } X} k^{2} \mathbb{P}(X=k)
$$

Variance

- Variance is a measure of spread of a random variable
- Define the second moment:

$$
\mathbb{E} X^{2}=\sum_{\text {all values of } X} k^{2} \mathbb{P}(X=k) .
$$

- The variance is defined as:

$$
\mathbb{E} X^{2}-(\mathbb{E} X)^{2}
$$

Variance

- Variance is a measure of spread of a random variable
- Define the second moment:

$$
\mathbb{E} X^{2}=\sum_{\text {all values of } X} k^{2} \mathbb{P}(X=k) .
$$

- The variance is defined as:

$$
\mathbb{E} X^{2}-(\mathbb{E} X)^{2}
$$

- Bernoulli Distribution:

$$
\begin{aligned}
\mathbb{E} X^{2} & =1^{2} \mathbb{P}(X=1)+0^{2} \mathbb{P}(x=0) \\
& =p \\
\Longrightarrow \operatorname{Var}(X) & =p-p^{2} \\
& =p(1-p) .
\end{aligned}
$$

Higher Moments

- Higher moments include the skew (third moment) and kurtosis (fourth moment)

Higher Moments

- Higher moments include the skew (third moment) and kurtosis (fourth moment)
- General formula:

$$
\mathbb{E} X^{p}=\sum_{\text {all values of } X} k^{p} \mathbb{P}(X=k)
$$

Independence

- Two events A and B are independent if $\mathbb{P}(A$ and $B)=\mathbb{P}(A) \mathbb{P}(B)$.

Independence

- Two events A and B are independent if $\mathbb{P}(A$ and $B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Two random variables are independent if the above holds for all possible events.

Independence

- Two events A and B are independent if $\mathbb{P}(A$ and $B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Two random variables are independent if the above holds for all possible events.
- Covariance:

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & \sum_{\text {all values } k \text { of } X \text { and } j \text { of } Y}\{ \\
& (k-\mathbb{E} X)(j-\mathbb{E} Y) \\
& \times \mathbb{P}(X=k \text { and } Y=j)\}
\end{aligned}
$$

Independence

- Two events A and B are independent if $\mathbb{P}(A$ and $B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Two random variables are independent if the above holds for all possible events.
- Covariance:

$$
\begin{aligned}
\operatorname{Cov}(X, Y)=\sum_{\text {all values } k \text { of } X \text { and } j \text { of } Y}\{ & (k-\mathbb{E} X)(j-\mathbb{E} Y) \\
& \times \mathbb{P}(X=k \text { and } Y=j)\}
\end{aligned}
$$

- Correlation:

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov} X, Y}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Independence

- Two events A and B are independent if $\mathbb{P}(A$ and $B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Two random variables are independent if the above holds for all possible events.
- Covariance:

$$
\begin{aligned}
\operatorname{Cov}(X, Y)=\sum_{\text {all values } k \text { of } X \text { and } j \text { of } Y}\{ & (k-\mathbb{E} X)(j-\mathbb{E} Y) \\
& \times \mathbb{P}(X=k \text { and } Y=j)\}
\end{aligned}
$$

- Correlation:

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov} X, Y}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Uncorrelated does not imply independent!

Outline

(1) Probability

(2) Statistics

(3) Probability and Statistics for Random Graphs Primer

Statistics vs. Probability

- Probability studies properties of distributions assuming one knows the distribution

Statistics vs. Probability

- Probability studies properties of distributions assuming one knows the distribution
- Statistics studies how to learn the distribution

Statistics vs. Probability

- Probability studies properties of distributions assuming one knows the distribution
- Statistics studies how to learn the distribution
- Statistics needs tools from probability and vice versa (though slightly less so)

Statistics vs. Probability

- Probability studies properties of distributions assuming one knows the distribution
- Statistics studies how to learn the distribution
- Statistics needs tools from probability and vice versa (though slightly less so)
- In practice, we do not know the Bernoulli parameter p !

Statistics vs. Probability

- Probability studies properties of distributions assuming one knows the distribution
- Statistics studies how to learn the distribution
- Statistics needs tools from probability and vice versa (though slightly less so)
- In practice, we do not know the Bernoulli parameter p!
- How do we estimate it?

Estimators

- Suppose one has observations from a distribution with some parameter θ (example: Binomial distribution with parameter $\theta=p$)

Estimators

- Suppose one has observations from a distribution with some parameter θ (example: Binomial distribution with parameter $\theta=p$)
- An estimator, formally, is any function of the data, but really you want to be somewhat intelligent about it

Estimators

- Suppose one has observations from a distribution with some parameter θ (example: Binomial distribution with parameter $\theta=p$)
- An estimator, formally, is any function of the data, but really you want to be somewhat intelligent about it
- Sample mean for observations $\left\{X_{i}\right\}_{i=1}^{n}$:

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be iid (independent, identically distributed).

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be iid (independent, identically distributed).
- Let $\mu=\mathbb{E} X$ and $\sigma^{2}=\operatorname{Var}(X)$.

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be iid (independent, identically distributed).
- Let $\mu=\mathbb{E} X$ and $\sigma^{2}=\operatorname{Var}(X)$.
- Then as $n \rightarrow \infty$

$$
\sqrt{n} \frac{\bar{X}-\mu}{\sigma} \rightarrow N(0,1)
$$

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be iid (independent, identically distributed).
- Let $\mu=\mathbb{E} X$ and $\sigma^{2}=\operatorname{Var}(X)$.
- Then as $n \rightarrow \infty$

$$
\sqrt{n} \frac{\bar{x}-\mu}{\sigma} \rightarrow N(0,1) .
$$

- l.e. $\bar{X} \approx N\left(\mu, \sigma^{2}\right)$ (bell curve centered at μ with standard deviation σ)

Central Limit Theorem

- Let X_{1}, \ldots, X_{n} be iid (independent, identically distributed).
- Let $\mu=\mathbb{E} X$ and $\sigma^{2}=\operatorname{Var}(X)$.
- Then as $n \rightarrow \infty$

$$
\sqrt{n} \frac{\bar{x}-\mu}{\sigma} \rightarrow N(0,1) .
$$

- l.e. $\bar{X} \approx N\left(\mu, \sigma^{2}\right)$ (bell curve centered at μ with standard deviation σ)
- R Example

Outline

(2) Statistics

(3) Probability and Statistics for Random Graphs Primer

Erdos-Renyi Random Graphs

- An undirected Erdos-Renyi random graph satisfies

$$
\mathbb{P}\left(A_{i j}=1\right)=p
$$

independently for all $i<j$ with $A_{j i}=A_{i j}$ for $j<i$.

Erdos-Renyi Random Graphs

- An undirected Erdos-Renyi random graph satisfies

$$
\mathbb{P}\left(A_{i j}=1\right)=p
$$

independently for all $i<j$ with $A_{j i}=A_{i j}$ for $j<i$.

- Each edge is generated with probability p.

Erdos-Renyi Random Graphs

- An undirected Erdos-Renyi random graph satisfies

$$
\mathbb{P}\left(A_{i j}=1\right)=p
$$

independently for all $i<j$ with $A_{j i}=A_{i j}$ for $j<i$.

- Each edge is generated with probability p.
- What is the distribution of the degree of the i 'th vertex?

Erdos-Renyi Random Graphs

- An undirected Erdos-Renyi random graph satisfies

$$
\mathbb{P}\left(A_{i j}=1\right)=p
$$

independently for all $i<j$ with $A_{j i}=A_{i j}$ for $j<i$.

- Each edge is generated with probability p.
- What is the distribution of the degree of the i 'th vertex?
- How might we estimate p ?

Erdos-Renyi Random Graphs

- An undirected Erdos-Renyi random graph satisfies

$$
\mathbb{P}\left(A_{i j}=1\right)=p
$$

independently for all $i<j$ with $A_{j i}=A_{i j}$ for $j<i$.

- Each edge is generated with probability p.
- What is the distribution of the degree of the i 'th vertex?
- How might we estimate p?
- R Example

Erdos-Renyi Random Graphs

- What is $\mathbb{E} A$?

Erdos-Renyi Random Graphs

- What is $\mathbb{E} A$?

$$
(\mathbb{E} A)_{i j}=p(i \neq j) \Longrightarrow \mathbb{E} \boldsymbol{A}=\left(\begin{array}{ccccc}
0 & p & p & \cdots & p \\
p & 0 & p & \cdots & p \\
p & p & 0 & \cdots & \vdots \\
p & \cdots & \cdots & \ddots & p \\
p & \cdots & \cdots & p & 0
\end{array}\right)
$$

Erdos-Renyi Random Graphs

- What is $\mathbb{E} A$?

$$
(\mathbb{E} A)_{i j}=p(i \neq j) \Longrightarrow \mathbb{E} A=\left(\begin{array}{ccccc}
0 & p & p & \cdots & p \\
p & 0 & p & \cdots & p \\
p & p & 0 & \cdots & \vdots \\
p & \cdots & \cdots & \ddots & p \\
p & \cdots & \cdots & p & 0
\end{array}\right)
$$

- What if we allow self-loops?

Erdos-Renyi Random Graphs

- What is $\mathbb{E} A$?

$$
(\mathbb{E} A)_{i j}=p(i \neq j) \Longrightarrow \mathbb{E} A=\left(\begin{array}{ccccc}
0 & p & p & \cdots & p \\
p & 0 & p & \cdots & p \\
p & p & 0 & \cdots & \vdots \\
p & \cdots & \cdots & \ddots & p \\
p & \cdots & \cdots & p & 0
\end{array}\right)
$$

- What if we allow self-loops?

$$
\mathbb{E} \boldsymbol{A}=\left(\begin{array}{ccc}
p & \cdots & p \\
\vdots & \ddots & \vdots \\
p & \cdots & p
\end{array}\right)=p 11^{\top} \quad 1=\text { vector of all ones }
$$

- R Example

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph
- Suppose there are K communities.

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph
- Suppose there are K communities.
- Vertex i and j belong to community I and k respectively.

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph
- Suppose there are K communities.
- Vertex i and j belong to community I and k respectively.
- Then A is a stochastic blockmodel if

$$
\mathbb{P}\left(A_{i j}=1\right)=B_{l k} .
$$

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph
- Suppose there are K communities.
- Vertex i and j belong to community / and k respectively.
- Then A is a stochastic blockmodel if

$$
\mathbb{P}\left(A_{i j}=1\right)=B_{l k} .
$$

- Special case: one community $B_{11}=p$

Stochastic Blockmodels

- Generalization of Erdos-Renyi Random Graph
- Suppose there are K communities.
- Vertex i and j belong to community / and k respectively.
- Then A is a stochastic blockmodel if

$$
\mathbb{P}\left(A_{i j}=1\right)=B_{l k} .
$$

- Special case: one community $B_{11}=p$
- One community SBM = Erdos-Renyi

Stochastic Blockmodels

With self-loops, what is $\mathbb{E} A$? (assume two communities and organized by communities)

Stochastic Blockmodels

With self-loops, what is $\mathbb{E} A$? (assume two communities and organized by communities)

$$
\mathbb{E} A=\left(\begin{array}{cccccc}
B_{11} & \cdots & B_{11} & B_{12} & \cdots & B_{12} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
B_{11} & \cdots & B_{11} & B_{12} & \cdots & B_{12} \\
B_{21} & \cdots & B_{21} & B_{22} & \cdots & B_{22} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
B_{21} & \cdots & B_{21} & B_{22} & \cdots & B_{22}
\end{array}\right)
$$

Stochastic Blockmodels

With self-loops, what is $\mathbb{E} A$? (assume two communities and organized by communities)

$$
\mathbb{E} \boldsymbol{A}=\left(\begin{array}{cccccc}
B_{11} & \cdots & B_{11} & B_{12} & \cdots & B_{12} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
B_{11} & \cdots & B_{11} & B_{12} & \cdots & B_{12} \\
B_{21} & \cdots & B_{21} & B_{22} & \cdots & B_{22} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
B_{21} & \cdots & B_{21} & B_{22} & \cdots & B_{22}
\end{array}\right)
$$

R Example

