HEART: Statistics and Data Science With Networks

Joshua Agterberg

Johns Hopkins University

Fall 2021

Outline

(1) Basic Graph Theory

- Directed and Undirected Graphs
- Adjacency and Lacplacian Matrices
- Basic Statistical Properties of Graphs

Outline

(1) Basic Graph Theory

- Directed and Undirected Graphs
- Adjacency and Lacplacian Matrices
- Basic Statistical Properties of Graphs

Graphs

A graph (or network) is a set of vertices V and edges E

Graphs

A graph (or network) is a set of vertices V and edges E Can be undirected or directed

Undirected Graph

Directed Graph

Examples

Examples of Undirected Graphs:

Examples

Examples of Undirected Graphs:

- Facebook
- Friendships (typically)
- Coauthors on papers

Examples

Examples of Undirected Graphs:

- Facebook
- Friendships (typically)
- Coauthors on papers

Examples of Directed Graphs:

Examples

Examples of Undirected Graphs:

- Facebook
- Friendships (typically)
- Coauthors on papers

Examples of Directed Graphs:

- Twitter
- Instagram
- COVID transmission graph

Degrees: Undirected Graphs

- For undirected graphs, the degree for a vertex is just the number of edges for that vertex.

Degrees: Undirected Graphs

- For undirected graphs, the degree for a vertex is just the number of edges for that vertex.
- E.g. You are friends with 25 people, so your degree is 25, but Joshua is only friends with his mom, so his degree is 1.

Degrees: Undirected Graphs

- For undirected graphs, the degree for a vertex is just the number of edges for that vertex.
- E.g. You are friends with 25 people, so your degree is 25, but Joshua is only friends with his mom, so his degree is 1 .
- Self-Loops: If an edge is allowed from one vertex to itself, then that is called a self-loop

Degrees: Undirected Graphs

- For undirected graphs, the degree for a vertex is just the number of edges for that vertex.
- E.g. You are friends with 25 people, so your degree is 25, but Joshua is only friends with his mom, so his degree is 1 .
- Self-Loops: If an edge is allowed from one vertex to itself, then that is called a self-loop
- E.g. Joshua is friends with himself and his mom, so his degree is 2 allowing self-loops.

Degrees: Undirected Graphs

Figure: : Source

Degrees: Directed Graphs

- In Degree:
- Out Degree:

Degrees: Directed Graphs

- In Degree: Counts the number of incoming edges into a vertex
- Out Degree: Counts the number of outgoing edges from a vertex

Degrees: Directed Graphs

Figure: : source

Adjacency Matrix

- A matrix is a square ordering of numbers (learn about them in linear algebra)

Adjacency Matrix

- A matrix is a square ordering of numbers (learn about them in linear algebra)
- Adjacency matrix encodes graph information - entry (i, j) is one if there is an edge between vertex i and vertex j

Adjacency Matrix

- A matrix is a square ordering of numbers (learn about them in linear algebra)
- Adjacency matrix encodes graph information - entry (i, j) is one if there is an edge between vertex i and vertex j

Graph:

Adjacency Matrix:

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Laplacian Matrix

- Combinatorial Laplacian: $D-A$, where $D_{i i}$ is the degree of the i 'th vertex
- Normalized Laplacian: $I-D^{-1 / 2} A D^{-1 / 2}$ (complicated)

Laplacian Matrix

- Combinatorial Laplacian: $D-A$, where $D_{i i}$ is the degree of the i 'th vertex
- Normalized Laplacian: $I-D^{-1 / 2} A D^{-1 / 2}$ (complicated)

Combinatorial Laplacian
Matrix:

$$
\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Some simple "first-pass" ways to look a a network

- Edge density:
- $\frac{2|E|}{n(n-1)}$ for undirected graphs
- $\frac{|E|}{n(n-1)}$ for directed graphs

Some simple "first-pass" ways to look a a network

- Edge density:
- $\frac{2|E|}{n(n-1)}$ for undirected graphs
- $\frac{|E|}{n(n-1)}$ for directed graphs
- Average degree:
- Let d_{1}, \ldots, d_{n} be the degrees of each vertex
- Average degree is just $\frac{1}{n} \sum_{i=1}^{n} d_{i}$

Some simple "first-pass" ways to look a a network

- Edge density:
- $\frac{2|E|}{n(n-1)}$ for undirected graphs
- $\frac{|E|}{n(n-1)}$ for directed graphs
- Average degree:
- Let d_{1}, \ldots, d_{n} be the degrees of each vertex
- Average degree is just $\frac{1}{n} \sum_{i=1}^{n} d_{i}$
- Going further: degree distributions
- Look at distribution of degrees (e.g. histogram)

Some simple "first-pass" ways to look a a network

- Edge density:
- $\frac{2|E|}{n(n-1)}$ for undirected graphs
- $\frac{|E|}{n(n-1)}$ for directed graphs
- Average degree:
- Let d_{1}, \ldots, d_{n} be the degrees of each vertex
- Average degree is just $\frac{1}{n} \sum_{i=1}^{n} d_{i}$
- Going further: degree distributions
- Look at distribution of degrees (e.g. histogram)

Karate Club Python Example

Some simple "first-pass" ways to look a a network

- Edge density:
- $\frac{2|E|}{n(n-1)}$ for undirected graphs
- $\frac{|E|}{n(n-1)}$ for directed graphs
- Average degree:
- Let d_{1}, \ldots, d_{n} be the degrees of each vertex
- Average degree is just $\frac{1}{n} \sum_{i=1}^{n} d_{i}$
- Going further: degree distributions
- Look at distribution of degrees (e.g. histogram)

Karate Club Python Example
Random Graph R Example

