▲□▶▲□▶▲□▶▲□▶ □ のQ@

HEART: Statistics and Data Science With Networks

Joshua Agterberg

Johns Hopkins University

Fall 2021

Matrices

You have already seen matrices in the adjacency and Laplacian matrices.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

You have already seen matrices in the adjacency and Laplacian matrices.

For a matrix M, we let M_{ij} denote the entry of M in the *i*'th row and *j*'th column.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Matrices

You have already seen matrices in the adjacency and Laplacian matrices.

For a matrix M, we let M_{ij} denote the entry of M in the *i*'th row and *j*'th column.

Example:

$$M = \begin{pmatrix} 1 & 0 \\ 4 & 3 \end{pmatrix}$$

What is M_{12} ?

(日) (日) (日) (日) (日) (日) (日)

Matrices

You have already seen matrices in the adjacency and Laplacian matrices.

For a matrix M, we let M_{ij} denote the entry of M in the *i*'th row and *j*'th column.

Example:

$$M = \begin{pmatrix} 1 & 0 \\ 4 & 3 \end{pmatrix}$$

I

What is M_{12} ? Look in the first row and second column – yields $M_{12} = 0$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Matrix-Matrix Multiplication

For two matrices M_1 and M_2 , where M_1 is a $p_1 \times p_2$ matrix and M_2 is a $p_2 \times p_3$ matrix, the product matrix M_1M_2 satisfies

$$(M_1 M_2)_{ij} = \sum_{k=1}^{p_2} (M_1)_{ik} (M_2)_{kj}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Matrix-Matrix Multiplication

For two matrices M_1 and M_2 , where M_1 is a $p_1 \times p_2$ matrix and M_2 is a $p_2 \times p_3$ matrix, the product matrix M_1M_2 satisfies

$$(M_1 M_2)_{ij} = \sum_{k=1}^{p_2} (M_1)_{ik} (M_2)_{kj}.$$

Note that

$$\underbrace{M_1}_{p_1 \times p_2} \underbrace{M_2}_{p_2 \times p_3} = \underbrace{(M_1 M_2)}_{p_1 \times p_3}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Matrix-Matrix Multiplication

For two matrices M_1 and M_2 , where M_1 is a $p_1 \times p_2$ matrix and M_2 is a $p_2 \times p_3$ matrix, the product matrix M_1M_2 satisfies

$$(M_1 M_2)_{ij} = \sum_{k=1}^{p_2} (M_1)_{ik} (M_2)_{kj}.$$

Note that

$$\underbrace{M_1}_{p_1 \times p_2} \underbrace{M_2}_{p_2 \times p_3} = \underbrace{(M_1 M_2)}_{p_1 \times p_3}$$

so the inner dimensions match,

Matrix-Matrix Multiplication

For two matrices M_1 and M_2 , where M_1 is a $p_1 \times p_2$ matrix and M_2 is a $p_2 \times p_3$ matrix, the product matrix M_1M_2 satisfies

$$(M_1 M_2)_{ij} = \sum_{k=1}^{p_2} (M_1)_{ik} (M_2)_{kj}.$$

Note that

$$\underbrace{M_1}_{p_1 \times p_2} \underbrace{M_2}_{p_2 \times p_3} = \underbrace{(M_1 M_2)}_{p_1 \times p_3}$$

so the inner dimensions match, and the new matrix dimensions are the two outer dimensions.

Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix-Matrix Multiplication: Example 1

Suppose

$$M_1 = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix-Matrix Multiplication: Example 1

Suppose

$$M_1 = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

$$M_{1}M_{2} = \begin{pmatrix} 1 \times 1 + 2 \times 3 & 1 \times 3 + 2 \times 1 \\ 1 \times 1 + 4 \times 3 & 1 \times 3 + 4 \times 1 \end{pmatrix} = \begin{pmatrix} 7 & 5 \\ 13 & 7 \end{pmatrix}$$

Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix-Matrix Multiplication: Example 2

Suppose

$$M_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \end{pmatrix}$$

Eigenvalues

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Matrix-Matrix Multiplication: Example 2

Suppose

$$M_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \end{pmatrix}$$

$$M_{1}M_{2} = \begin{pmatrix} 1 \times 1 + 2 \times 3 + 3 \times 0 & 1 \times 3 + 2 \times 1 + 0 \times 3 \\ 1 \times 1 + 4 \times 3 + 5 \times 0 & 1 \times 3 + 4 \times 1 + 5 \times 0 \end{pmatrix}$$
$$= \begin{pmatrix} 7 & 5 \\ 13 & 7 \end{pmatrix}$$

Matrix-Matrix Multiplication

Matrix-Vector Multiplication

Eigenvalues

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Matrix-Matrix Multiplication: Example 3

Suppose

$$M_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix-Matrix Multiplication: Example 3

Suppose

$$M_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

What is $M_1 M_2$? Trick question! The inner dimensions don't match!

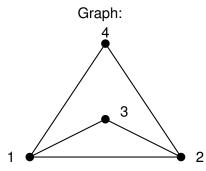
Matrix-Matrix Multiplication

Matrix-Vector Multiplication

Eigenvalues

Matrix-Matrix Multiplication: Adjacency Matrix Multiplication

Recall the adjacency matrix of a graph:



Adjacency Matrix:

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Matrix-Matrix Multiplication

Matrix-Vector Multiplication

Eigenvalues

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Matrix-Matrix Multiplication: Adjacency Matrix Multiplication

If A is the adjacency matrix of a graph, what is A^2 ?

Eigenvalues

Matrix-Matrix Multiplication: Adjacency Matrix Multiplication

If A is the adjacency matrix of a graph, what is A^2 ?

$$A^{2} = AA = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 2 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

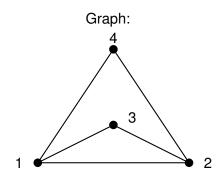
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Matrix-Matrix Multiplication

Matrix-Vector Multiplication

Eigenvalues

Matrix-Matrix Multiplication: Adjacency Matrix Multiplication



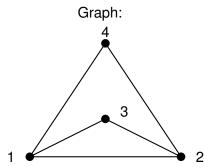
Adjacency Matrix squared:

$$\begin{pmatrix} 3 & 2 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Eigenvalues

Matrix-Matrix Multiplication: Adjacency Matrix Multiplication



Adjacency Matrix squared:

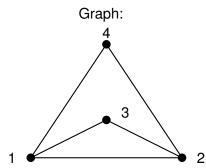
$$\begin{pmatrix} 3 & 2 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Observation: $(A^2)_{ij}$ counts the number of paths of length two from vertex *i* to vertex *j*!

Eigenvalues

Matrix-Matrix Multiplication: Adjacency Matrix Multiplication



Adjacency Matrix squared:

$$\begin{pmatrix} 3 & 2 & 1 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

Observation: $(A^2)_{ij}$ counts the number of paths of length two from vertex *i* to vertex *j*! In general, A^k counts the number of paths of length *k* from vertex *i* to vertex *j*.

Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix Vector Multiplication

It's easy once we know matrix-matrix multiplication!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Matrix Vector Multiplication

It's easy once we know matrix-matrix multiplication! If x is a vector of dimension p_2 , it is a list of p_2 different numbers.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Matrix Vector Multiplication

It's easy once we know matrix-matrix multiplication! If *x* is a vector of dimension p_2 , it is a list of p_2 different numbers. Then *x* is also a $p_2 \times 1$ matrix, so

$$(Mx)_{ij}=\sum_{k=1}^{p_2}M_{ik}x_{kj}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Matrix Vector Multiplication

It's easy once we know matrix-matrix multiplication! If x is a vector of dimension p_2 , it is a list of p_2 different numbers. Then x is also a $p_2 \times 1$ matrix, so

$$(Mx)_{ij}=\sum_{k=1}^{p_2}M_{ik}x_{kj}.$$

But the second dimension is one, so j = 1.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Matrix Vector Multiplication

It's easy once we know matrix-matrix multiplication! If x is a vector of dimension p_2 , it is a list of p_2 different numbers. Then x is also a $p_2 \times 1$ matrix, so

$$(Mx)_{ij}=\sum_{k=1}^{p_2}M_{ik}x_{kj}.$$

But the second dimension is one, so j = 1. Therefore if *M* is a $p_1 \times p_2$ matrix, then *Mx* is a p_1 -dimensional vector.

Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix Vector Multiplication: Example 1

$$M = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}; \qquad x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

What is Mx?

Eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Matrix Vector Multiplication: Example 1

$$M = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}; \qquad x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

What is Mx?

$$Mx = \begin{pmatrix} 1 \times 2 + 1 \times 5 \\ 3 \times 2 + 3 \times 5 \end{pmatrix}$$
$$= \begin{pmatrix} 7 \\ 21 \end{pmatrix}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Matrix Vector Multiplication: Special Example

Let *A* be the adjacency matrix of a graph on *n* vertices, and let x be the vector of all ones. What is Ax?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Matrix Vector Multiplication: Special Example

Let *A* be the adjacency matrix of a graph on *n* vertices, and let x be the vector of all ones. What is Ax?

$$(Ax)_i = \sum_{k=1}^n A_{ik} x_k$$
$$= \sum_{k=1}^n A_{ik}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Matrix Vector Multiplication: Special Example

Let *A* be the adjacency matrix of a graph on *n* vertices, and let x be the vector of all ones. What is Ax?

$$(Ax)_i = \sum_{k=1}^n A_{ik} x_k$$

= $\sum_{k=1}^n A_{ik}$.

But what is $\sum_{k=1}^{n} A_{ik}$?

Matrix Vector Multiplication: Special Example

Let *A* be the adjacency matrix of a graph on *n* vertices, and let x be the vector of all ones. What is Ax?

$$(Ax)_i = \sum_{k=1}^n A_{ik} x_k$$
$$= \sum_{k=1}^n A_{ik}.$$

But what is $\sum_{k=1}^{n} A_{ik}$? It is the *degree* of the *i*'th vertex!

・ロト・日本・モート ヨー うへの

▲□▶▲@▶▲目▶▲目▶ 目 のへの

Eigenvalues

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

If *M* is a square matrix, an eigenvalue-eigenvector pair for *M* is the pair (λ, x) such that

 $Mx = \lambda x.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If *M* is a square matrix, an eigenvalue-eigenvector pair for *M* is the pair (λ, x) such that

$$Mx = \lambda x.$$

Eigenvalues are very important quantities, but are hard to understand without more detail. Hard to compute in general. Might be complex numbers!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If *M* is a square matrix, an eigenvalue-eigenvector pair for *M* is the pair (λ, x) such that

$$Mx = \lambda x.$$

Eigenvalues are very important quantities, but are hard to understand without more detail. Hard to compute in general. Might be complex numbers! But *symmetric* matrices always have real-valued eigenvalues (spectral theorem).

Eigenvalues

Eigenvalue: Example

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Eigenvalues

Eigenvalue: Example

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

One eigenvalue $\lambda = 2$ with eigenvector x = (1, 1).

Eigenvalues

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Eigenvalue: Example

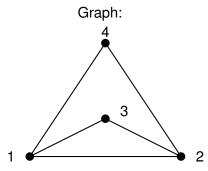
$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

One eigenvalue $\lambda = 2$ with eigenvector x = (1, 1). Another eigenvalue with $\lambda = 0$ with eigenvector x = (1, -1).

Eigenvalues

Eigenvalue: Example

Recall the *combinatorial Laplacian* D - A, where D_{ii} is the degree of the *i*'th vertex.



Combinatorial Laplacian Matrix:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Eigenvalue: Example

If we sum up the rows, this is the same as multiplying by a vector of all ones:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Eigenvalue: Example

If we sum up the rows, this is the same as multiplying by a vector of all ones:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

- Zero is always an eigenvalue of the combinatorial Laplacian.
- Suppose we count the number of *different* eigenvectors with the eigenvalue zero. We call this the *eigenvalue multiplicity*.
- Then the multiplicity of the eigenvalue zero is equal to the number of connected components of the graph.

Eigenvalue: Example

If we sum up the rows, this is the same as multiplying by a vector of all ones:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

- Zero is always an eigenvalue of the combinatorial Laplacian.
- Suppose we count the number of *different* eigenvectors with the eigenvalue zero. We call this the *eigenvalue multiplicity*.
- Then the multiplicity of the eigenvalue zero is equal to the number of connected components of the graph.
- Shows how eigenvalues and eigenvectors of graph-related matrices provide valuable information of the graph!

Eigenvalues

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Orthonormal Vectors

• Say a vector $x \in \mathbb{R}^n$ is a *unit vector* if ||x|| = 1, where

$$\|\boldsymbol{x}\| = \sqrt{\sum_{i=1}^n x_i^2}.$$

Eigenvalues

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Orthonormal Vectors

• Say a vector $x \in \mathbb{R}^n$ is a *unit vector* if ||x|| = 1, where

$$\|x\| = \sqrt{\sum_{i=1}^n x_i^2}.$$

• Say x and y are orthogonal if $\langle x, y \rangle = x^{\top}y = 0$ where

$$x^{\top}y = \sum_{i=1}^n x_i y_i.$$

Orthonormal Vectors

• Say a vector $x \in \mathbb{R}^n$ is a *unit vector* if ||x|| = 1, where

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^n x_i^2}.$$

• Say x and y are *orthogonal* if $\langle x, y \rangle = x^{\top}y = 0$ where

$$x^{\top}y = \sum_{i=1}^n x_i y_i.$$

Say a collection of vectors x₁ ··· x_n are an orthonormal set if

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Orthonormal Vectors

• Say a vector $x \in \mathbb{R}^n$ is a *unit vector* if ||x|| = 1, where

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^n x_i^2}.$$

• Say x and y are *orthogonal* if $\langle x, y \rangle = x^{\top}y = 0$ where

$$x^{\top}y = \sum_{i=1}^n x_i y_i.$$

Say a collection of vectors x₁ ··· x_n are an orthonormal set if
||x_i|| = 1 for all i

Orthonormal Vectors

• Say a vector $x \in \mathbb{R}^n$ is a *unit vector* if ||x|| = 1, where

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^n x_i^2}.$$

• Say x and y are *orthogonal* if $\langle x, y \rangle = x^{\top}y = 0$ where

$$x^{\top}y = \sum_{i=1}^n x_i y_i.$$

Say a collection of vectors x₁ ··· x_n are an orthonormal set if

•
$$||x_i|| = 1$$
 for all *i*

•
$$\langle x_i, x_j \rangle = 0$$
 if $i \neq j$.

Eigenvalues

Orthonormal Vectors

Example:

$$x_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

1 in the i'th place

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Eigenvalues ooooooo●o

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Orthonormal Vectors

Example:

$$x_{1} = \begin{pmatrix} \frac{1}{\sqrt{n}} \\ \vdots \\ \frac{1}{\sqrt{n}} \end{pmatrix} \qquad x_{2} = \begin{pmatrix} \frac{1}{\sqrt{n}} \\ \vdots \\ \frac{-1}{\sqrt{n}} \\ \vdots \\ \frac{-1}{\sqrt{n}} \end{pmatrix}$$

for *n* even.

The Spectral Theorem

• Let *M* be a symmetric $n \times n$ matrix. ($M = M^{\top}$).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The Spectral Theorem

- Let *M* be a symmetric $n \times n$ matrix. ($M = M^{\top}$).
- Then *M* has *n* real eigenvalues $\lambda_1 \cdots \lambda_n$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The Spectral Theorem

- Let *M* be a symmetric $n \times n$ matrix. ($M = M^{\top}$).
- Then *M* has *n* real eigenvalues $\lambda_1 \cdots \lambda_n$.
- *M* also has *n* orthonormal eigenvectors