HEART: Statistics and Data Science With Networks

Joshua Agterberg

Johns Hopkins University

Fall 2021

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Important Properties of Real and Random Graphs	Stochastic Blockmodels and Variants	General Models	Statistical Models versus

Outline

2 Stochastic Blockmodels and Variants

4 Statistical Models versus Real-World Networks

Important Properties of Real and Random Graphs	Stochastic Blockmodels and Variants	General Models	Statistical Models versus
•00			

Outline

Important Properties of Real and Random Graphs

Stochastic Blockmodels and Variants

3 General Models

4 Statistical Models versus Real-World Networks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Random and Real World Graphs

Real World Graphs:

- Power-Laws
- Triangles
- Community Structure

Important Properties of Real and Random Graphs $\circ \bullet \circ$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Random and Real World Graphs

Real World Graphs:

- Power-Laws
- Triangles
- Community Structure

Random Graph Models:

- Sparsity (not scale-free networks)
- Community Structure (SBMs)
- Low-rank property (My work)

bookmastic Blockmodels and Variants General Models Statistical Models versus

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Low-Rank Random Graphs

 A common assumption to make is that EA is a low-rank matrix

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- A common assumption to make is that EA is a low-rank matrix
- Special cases:
 - Erdos-Renyi (A_{ij} ~ Bernoulli(p))
 - Stochastic blockmodel and variants

Important Properties of Real and Random Graphs $_{\odot \odot \bullet}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- A common assumption to make is that EA is a low-rank matrix
- Special cases:
 - Erdos-Renyi (A_{ij} ~ Bernoulli(p))
 - Stochastic blockmodel and variants
- Allows us to use dimensionality reduction techniques based on *spectral embeddings*

Important Properties of Real and Random Graphs	Stochastic Blockmodels and Variants	General Models	Statistical Models versus
	● 0 00		

Outline

Important Properties of Real and Random Graphs

2 Stochastic Blockmodels and Variants

3 General Models

4 Statistical Models versus Real-World Networks

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Stochastic Blockmodels

 Each edge probability depends only on community membership

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Stochastic Blockmodels

- Each edge probability depends only on community membership
- Allows for more generality than E-R

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Stochastic Blockmodels

- Each edge probability depends only on community membership
- Allows for more generality than E-R
- Important theoretical model to understand performance

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Stochastic Blockmodels

- Each edge probability depends only on community membership
- Allows for more generality than E-R
- Important theoretical model to understand performance
- Doesn't capture within-vertex heterogeneity, since two vertices in the same community are "equivalent"

Degree-Corrected Stochastic Blockmodels

 If vertex i and j belong to communities k and l, the DCSBM is defined by

$$\mathbb{P}(A_{ij}=1)= heta_i heta_j\mathbf{B}_{kl}$$

Degree-Corrected Stochastic Blockmodels

 If vertex i and j belong to communities k and l, the DCSBM is defined by

$$\mathbb{P}(A_{ij}=1)= heta_i heta_j\mathbf{B}_{kl}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 Allows for vertex-specific heterogeneity by a degree-correction factor θ_i associated to vertex i

Degree-Corrected Stochastic Blockmodels

If vertex *i* and *j* belong to communities *k* and *l*, the DCSBM is defined by

$$\mathbb{P}(A_{ij} = 1) = heta_i heta_j \mathbf{B}_{kl}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Allows for vertex-specific heterogeneity by a degree-correction factor θ_i associated to vertex i
- Special Case: $\theta_i = 1$ for all *i*

Degree-Corrected Stochastic Blockmodels

 If vertex i and j belong to communities k and l, the DCSBM is defined by

$$\mathbb{P}(A_{ij}=1)= heta_i heta_j\mathbf{B}_{kl}$$

(日) (日) (日) (日) (日) (日) (日)

- Allows for vertex-specific heterogeneity by a degree-correction factor θ_i associated to vertex i
- Special Case: $\theta_i = 1$ for all *i*
- Satisfies $\mathbb{E}A = \Theta ZBZ^{\top}\Theta$ (low-rank property)

Degree-Corrected Stochastic Blockmodels

 If vertex i and j belong to communities k and l, the DCSBM is defined by

$$\mathbb{P}(A_{ij}=1)= heta_i heta_j\mathbf{B}_{kl}$$

- Allows for vertex-specific heterogeneity by a degree-correction factor θ_i associated to vertex i
- Special Case: $\theta_i = 1$ for all *i*
- Satisfies $\mathbb{E}A = \Theta ZBZ^{\top}\Theta$ (low-rank property)
- Empirical Work

Mixed-Membership Stochastic Blockmodels

 Allows each vertex to belong to a weighted combination of communities

Mixed-Membership Stochastic Blockmodels

- Allows each vertex to belong to a weighted combination of communities
- If vertex *i* belongs to community *k* with weight *w_k*, and vertex *j* belongs to community *l* with weight *w_l*, then

$$\mathbb{P}(A_{ij}=1)=\sum_{k,l}w_kw_lB_{kl}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Mixed-Membership Stochastic Blockmodels

- Allows each vertex to belong to a weighted combination of communities
- If vertex *i* belongs to community *k* with weight *w_k*, and vertex *j* belongs to community *l* with weight *w_l*, then

$$\mathbb{P}(A_{ij}=1)=\sum_{k,l}w_kw_lB_{kl}$$

(日) (日) (日) (日) (日) (日) (日)

• Require $\sum_k w_k = 1$

Mixed-Membership Stochastic Blockmodels

- Allows each vertex to belong to a weighted combination of communities
- If vertex *i* belongs to community *k* with weight *w_k*, and vertex *j* belongs to community *l* with weight *w_l*, then

$$\mathbb{P}(A_{ij}=1)=\sum_{k,l}w_kw_lB_{kl}$$

- Require $\sum_k w_k = 1$
- Special case: $w_k = 1$ for some k and $w_{k'} = 0$ for $k' \neq k$

Mixed-Membership Stochastic Blockmodels

- Allows each vertex to belong to a weighted combination of communities
- If vertex *i* belongs to community *k* with weight *w_k*, and vertex *j* belongs to community *l* with weight *w_l*, then

$$\mathbb{P}(A_{ij}=1)=\sum_{k,l}w_kw_lB_{kl}$$

- Require $\sum_k w_k = 1$
- Special case: $w_k = 1$ for some k and $w_{k'} = 0$ for $k' \neq k$
- Satisfies $\mathbb{E}A = WBW^{\top}$

Important Properties of Real and Random Graphs	Stochastic Blockmodels and Variants	General Models	Statistical Models versus
		0000	

Outline

Important Properties of Real and Random Graphs

2 Stochastic Blockmodels and Variants

3 General Models

4 Statistical Models versus Real-World Networks

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

General Models Statistical Models versus 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Random Dot Product Graphs

 Motivated by idea that each vertex has a vector in a latent space associated to it

Random Dot Product Graphs

- Motivated by idea that each vertex has a vector in a latent space associated to it
- If vertex i has vector X_i and vertex j has vector X_i, then

$$\mathbb{P}(A_{ij}=1)=\langle X_i,X_j\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Random Dot Product Graphs

- Motivated by idea that each vertex has a vector in a latent space associated to it
- If vertex *i* has vector X_i and vertex *j* has vector X_i , then

$$\mathbb{P}(A_{ij}=1)=\langle X_i,X_j\rangle.$$

Need the above to be in [0, 1]

(日) (日) (日) (日) (日) (日) (日)

Random Dot Product Graphs

- Motivated by idea that each vertex has a vector in a latent space associated to it
- If vertex i has vector X_i and vertex j has vector X_i, then

$$\mathbb{P}(A_{ij} = 1) = \langle X_i, X_j \rangle.$$

- Need the above to be in [0, 1]
- Special Case: X_i depends only on community membership

(日) (日) (日) (日) (日) (日) (日)

Random Dot Product Graphs

- Motivated by idea that each vertex has a vector in a latent space associated to it
- If vertex *i* has vector X_i and vertex *j* has vector X_i , then

$$\mathbb{P}(A_{ij} = 1) = \langle X_i, X_j \rangle.$$

- Need the above to be in [0, 1]
- Special Case: X_i depends only on community membership
- Satisfies $\mathbb{E}A = XX^{\top}$ (psd matrix)

General Models Statistical Models versus 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Low-Rank Random Graphs

• Only require that $\mathbb{E}A$ is low-rank, and edges are independent for $i \leq j$

General Models Statistical Models versus 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Only require that $\mathbb{E}A$ is low-rank, and edges are independent for $i \leq j$
- Very general model

General Models Statistical Models versus 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Only require that $\mathbb{E}A$ is low-rank, and edges are independent for $i \leq j$
- Very general model
- Special cases:
 - $\mathbb{E}A$ is psd

General Models Statistical Models versus 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Only require that $\mathbb{E}A$ is low-rank, and edges are independent for $i \leq j$
- Very general model
- Special cases:
 - $\mathbb{E}A$ is psd
 - $\mathbb{E}A = WBW^{\top}$

General Models Statistical Models versus 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Only require that $\mathbb{E}A$ is low-rank, and edges are independent for $i \leq j$
- Very general model
- Special cases:
 - $\mathbb{E}A$ is psd
 - $\mathbb{E}A = WBW^{\top}$
 - $\mathbb{E}A = ZBZ^{\top}$

General Models Statistical Models versus 0000

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Only require that $\mathbb{E}A$ is low-rank, and edges are independent for $i \leq j$
- Very general model
- Special cases:
 - $\mathbb{E}A$ is psd
 - $\mathbb{E}A = WBW^{\top}$
 - $\mathbb{E}A = ZBZ^{\top}$
 - $\mathbb{E} A = \Theta Z B Z^{\top} \theta$

General Models Statistical Models versus 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Latent-Space Models

• Require that $\mathbb{P}(A_{ij} = 1) = f(X_i, X_j)$ for some function *f* called the link function

General Models Statistical Models versus 0000

General Latent-Space Models

- Require that $\mathbb{P}(A_{ij} = 1) = f(X_i, X_j)$ for some function f called the link function
- Much broader set of models

General Models Statistical Models versus

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

General Latent-Space Models

- Require that $\mathbb{P}(A_{ij} = 1) = f(X_i, X_j)$ for some function f called the link function
- Much broader set of models
- Problem: before we had a known link function, now we need to estimate it...

(日) (日) (日) (日) (日) (日) (日)

General Latent-Space Models

- Require that $\mathbb{P}(A_{ij} = 1) = f(X_i, X_j)$ for some function f called the link function
- Much broader set of models
- Problem: before we had a known link function, now we need to estimate it...
- Allows for lots of variability in probabilities, but hard to analyze...

Important Properties of Real and Random Graphs	Stochastic Blockmodels and Variants	General Models	Statistical Models versus
			000

Outline

Important Properties of Real and Random Graphs

Stochastic Blockmodels and Variants

3 General Models

4 Statistical Models versus Real-World Networks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

General Models Statistical Models versus 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Problems with statistical models

 As with all statistical models, more freedom in design makes analysis difficult

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- As with all statistical models, more freedom in design makes analysis difficult
- The problem with low-rank graphs and triangles

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- As with all statistical models, more freedom in design makes analysis difficult
- The problem with low-rank graphs and triangles
- Dense graphs cannot have power laws (average expected) degree grows proportional to log(n), but power laws it grows constant in n)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- As with all statistical models, more freedom in design makes analysis difficult
- The problem with low-rank graphs and triangles
- Dense graphs cannot have power laws (average expected) degree grows proportional to log(n), but power laws it grows constant in n)
- Important math problem: Fundamental limits of recovery

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- As with all statistical models, more freedom in design makes analysis difficult
- The problem with low-rank graphs and triangles
- Dense graphs cannot have power laws (average expected) degree grows proportional to log(n), but power laws it grows constant in n)
- Important math problem: Fundamental limits of recovery
- Important practical problem: for low-rank graphs we still need to choose the rank!

Important Properties of Real and Random Graphs	Stochastic Blockmodels and Variants	General Models	Statistical Models versu
			000

Choosing the rank

• Scree plot: plot the eigenvalues of A in descending order

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Look for an "elbow" (Zhu and Ghodsi)

Choosing the rank

• Scree plot: plot the eigenvalues of A in descending order

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Look for an "elbow" (Zhu and Ghodsi)
- Universal Singular Value Thresholding (USVT)

Choosing the rank

• Scree plot: plot the eigenvalues of A in descending order

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Look for an "elbow" (Zhu and Ghodsi)
- Universal Singular Value Thresholding (USVT)
- More complicated methods?
- Equation (27)