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This paper [2] studies the graph root distribution model (GRD), which is very similar generalized
RDPG [3], in the sense that the edge probabilities are given by indefinite inner products of random
vectors. The main difference is that here the latent positions can have infinite dimension, which can
be used to represent some graphons. The paper first studies distributions that can be represented
with this model, and then the estimation error of a truncated weighted spectral embedding (ASE).

1 Graphon model

• Let A = (Aij , i ∈ N, j ∈ N) be a two-dimensional infinite binary array of random variables with
exchangeable rows and columns, that is, for any finite permutation of the nodes σ : [N ]→ [N ],
it holds that

(Aij , i ∈ N, j ∈ N)
d
= (Aσ(i)σ(j), i ∈ N, j ∈ N).

That is, relabeling the rows and columns (nodes) doesn’t change the distribution of the array.
This node exchangeability formalizes the idea of a vertex sampling scheme, in which we assume
that the n vertices that were observed in an adjacency matrix A ∈ {0, 1}n×n are representative
from the population [1].

• According to the Aldous-Hoover theorem, the distribution of A can be obtained by first sam-
pling i.i.d. random variables s1, s2, . . . ,∼ U(0, 1), and then then sample independently sample

Aij ∼ Ber(W (si, sj))

for some symmetric function W : [0, 1] × [0, 1] → [0, 1], which is called a graphon. This
function is not identifiable, but an equivalence relation can be defined by looking at all measure
preserving transformations h such that W (s, t) = W2(h(s), h(t)) ∀s, t ∈ [0, 1].

• The cut-distance measures the dissimilarity between two graphons as

δ�(W1,W2) = inf
h1,h2

sup
S×S′⊂[0,1]2

∣∣∣∣∫
S×S′

W1(h1(s), h1(t))−W2(h2(s), h2(t)) ds dt

∣∣∣∣ .
The infimum in this definition removes the non-identifiability of the graphons. The set S × S′
can be thought as a subgraph, so this distance finds the subgraph in which the graphons are
the most different. The cut-distance is zero if and only if the graphons are equivalent.

• Node exchangeable graphs are either dense (expected node degree ≈ n) or empty. A parameter
ρn is introduced to model the sparsity of the network, so that An ∼ Ber(ρnW ), but I won’t
focus on this part.
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2 Graph root distribution

•

• The graph root distribution (GRD) model defines a distribution over K such that if X1, X2 ∼ F
then

PF (< X1, X2 >K∈ [0, 1]) = 1.

Here, K is a Krein space which is the direct sum of two Hilbert spaces H+ and H−, so any
vector x ∈ K can be expressed as x = (y, z), with y ∈ H+, z ∈ H− and

< x1, x2 >K=< y1, y2 >H+
− < z1, z2 >H− .

Thus, if these Hilbert spaces are finite dimensional, then GRDPG and GRD are the same
model. Hence, we know that all the models listed in the paper (SBM, degree corrected SBM,
mixed membership, etc.) are special cases of GRD.

• A graphon can be spectrally decomposed as

W (s, t) =

∞∑
j=1

λjφj(s)φj(t)−
∞∑
k=1

γkψk(s)ψk(t),

where λ1 ≥ . . . and γ1 ≥ . . . are non-negative eigenvalues, and {ψj} ∪ {φk} are mutually
orthogonal functions. This is again analogous to the GRDPG for finite n, in which An can be
described with the eigenvalues and eigenvectors of a symmetric matrix of bounded rank.

• One of the main results of this paper is to show that ifW admits a strong spectral decomposition,
which means that

∞∑
j=1

λjφ
2
j (s) + γjψ

2
j (s) <∞ ∀s,

then W can be represented as a GRD.

• Proposition 3.2 shows that all trace-class operators (which are the ones for which the sum of
the absolute value of its eigenvalues converges) admit a strong spectral decomposition, and
hence they are GRD. Some examples

– Finite rank

– Smooth graphons, in the sense that for some a > 1/2,

|W (x, y)−W (x, y′)| ≤ C|y − y′|a.

This example is important because Proposition 3.3 shows that these graphons are dense
in the space of continuous graphons (and hence can approximate any continuous graphon
with arbitrary precision).

– Continuous positive semidefinite graphons (or the difference between two positive semidef-
inite graphons).

• A GRD is identifiable up to some indefinite orthogonal transformation. This is again equivalent
to GRDPGs. The author chooses the canonical representation as the one that diagonalizes the
covariance operator.

• To study the space of graphons, the author defines the orthogonal Wasserstein distance as

dOW (F1, F2) = inf
v∈V(F1,F2)

inf
Q

E(Z1,Z2)∼v‖Z1 −QZ2‖,
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where Q is an indefinite orthogonal matrix, and V(F1, F2) is the space of joint distributions
in K × K with marginal distributions F1 and F2 on the appropriate Hilbert spaces. The first
infimum removes the non-identifiability issue, while the second one finds the joint distribution
that minimizes the difference. When F1 = F2, one can choose a distribution such that Z1 = Z2,
and hence dOW = 0. Note that this distance depends on the “latent positions”, so it is more
directly linked to the GRD model than the cut-distance, and Theorem 3.8 shows that the OW
distance is in fact an upper bound for the cut-distance.

3 Estimation

• To estimate the GRD model, the authors use an analogous method to the adjacency spectral
embedding (ASE), i.e., given An (a graph with n nodes) from A, the authors define a truncated
embedding as

X̂ = (λ̂
1/2
1 Û·1, . . . , λ̂

1/2
p U·p1),

Ŷ = (γ̂
1/2
1 V̂·1, . . . , γ̂

1/2
p V̂·p2),

where Û , V̂ are eigenvectors of An, and λ̂1,−γ̂1, . . . are positive and negative eigenvalues
respectively.

• To study the reconstruction error of the “ASE”, there are three assumptions introduced by
the author:

1. A canonical representation in which the true latent positions are equal to the scaled
eigenvectors, i.e., EX∼F (X2

j ) = λj and so on.

2. Polynomial decay on the eigenvalues and eigengaps, i.e., λj ∼ 1
jα and λj −λj+1 & 1

jβ
, for

1 < α ≤ β (similarly for γ). This is for convenience of the presentation, and the author
claims that having zeros in the eigenvalues or eigengaps will be too cumbersome.

3. Finite fourth moment of the latent positions EZ∼F ‖Z‖4, required to estimate the covari-
ance operator.

• There are three sources of error in the GRD estimation process: the error in estimating the
full distribution of the latent positions F using a sample of n nodes (F̂ ), the approximation
error of using a truncation of the spectrum F (p) to estimate the full spectrum F , and the error

introduced by using the spectral decomposition of An (F̂
(p)
A )

1. Theorem 4.1 calculates the estimation error between F̂
(p)
A and F̂ (p) (the empirical distri-

bution of the estimated latent positions and the one of the p-truncation of the true latent
positions, both for n nodes)

2. Lemma 4.2 bounds the approximation error between F (p) and F

3. Lemma 4.3 bounds the expected estimation error between F̂ (p) and F (p) (i.e., the error
in the distribution of the truncated latent positions, using the empirical distribution with
n nodes and the full distribution).

4. Finally, Theorem 4.4 gives the GRD estimation error, which is the sum of the errors in
the previous three results. That is,

δW (F̂
(p)
A , F ) = OP

n−α−1
4β + pβ+

1
2n−1/2︸ ︷︷ ︸

dW (F̂
(p)
A ,F̂ (p))

+ n−
1
p︸︷︷︸

dW (F̂ (p),F (p))

+ p−
α−1
2︸ ︷︷ ︸

dW (F (p),F )

 .

This error goes to zero if the embedding dimension satisfies p → ∞ and p = o(log n).
Theorem 4.1 actually requires p = o(n1/(2β+α)).
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